f(x)= 1x^4/5 - 2x^1/7
what is f ' (6) and f ' (1)
well if f(x)=ax^n then f'(x)=anx^(n+1)
so here f'(x)=(4/5)x^(9/5)-(2/7)x^(8/7)
hence
f'(6)=(4/5)6^(9/5)-(2/7)6^(8/7)
=17.91186386 (8dp)
and
f'(1)=(4/5)1^(9/5)-(2/7)1^(8/7)
=18/35
=0.5142857143 (10dp)
f'(x) = 4/5x^(-1/5)-2/7x^(-6/7)
f'(6) = 0.49
f'(1) = 0.51
Copyright © 2025 Q2A.ES - All rights reserved.
Answers & Comments
Verified answer
well if f(x)=ax^n then f'(x)=anx^(n+1)
so here f'(x)=(4/5)x^(9/5)-(2/7)x^(8/7)
hence
f'(6)=(4/5)6^(9/5)-(2/7)6^(8/7)
=17.91186386 (8dp)
and
f'(1)=(4/5)1^(9/5)-(2/7)1^(8/7)
=18/35
=0.5142857143 (10dp)
f'(x) = 4/5x^(-1/5)-2/7x^(-6/7)
f'(6) = 0.49
f'(1) = 0.51