simplify the radical √180x^13y^20z^-4
Do you mean
(√180)x^13 y^20z^(-4)
or
√(180x^13y^20z^4)?
180 = 9 * 4 * 5
so √180 = 3*2*√5 = 6√5
For the other:
(6 x^6y^10z^(-2)√(5x)
sqrt(180)
= sqrt(36 * 5)
= 6 sqrt(5)
sqrt(x^13)
= sqrt(x^12 * x)
= x^6 sqrt(x)
sqrt(y^20)
= y^10
sqrt(z^-4)
= z^-2
So,
â180x^13y^20z^-4
= 6 sqrt(5) x^6 sqrt(x) y^10 z^-2
= 6 x^6 y^10 z^-2 sqrt(5x)
Remove sqrt sign by writing as a power of 1/2:
[(180)(x^13)(y^20)z^(-4)]^(1/2)
Use the law of indices which says that (a^b)^c = a^(bc):
So we have:
180^(1/2) * x^(13/2) * y^(20/2) * z^(-4/2)
= (sqrt180) [x^(13/2)] [y^10] [z^-2]
= 6sqrt5 [x^(13/2)] [y^10] [z^-2]
Copyright © 2024 Q2A.ES - All rights reserved.
Answers & Comments
Verified answer
Do you mean
(√180)x^13 y^20z^(-4)
or
√(180x^13y^20z^4)?
180 = 9 * 4 * 5
so √180 = 3*2*√5 = 6√5
For the other:
(6 x^6y^10z^(-2)√(5x)
sqrt(180)
= sqrt(36 * 5)
= 6 sqrt(5)
sqrt(x^13)
= sqrt(x^12 * x)
= x^6 sqrt(x)
sqrt(y^20)
= y^10
sqrt(z^-4)
= z^-2
So,
â180x^13y^20z^-4
= 6 sqrt(5) x^6 sqrt(x) y^10 z^-2
= 6 x^6 y^10 z^-2 sqrt(5x)
Remove sqrt sign by writing as a power of 1/2:
[(180)(x^13)(y^20)z^(-4)]^(1/2)
Use the law of indices which says that (a^b)^c = a^(bc):
So we have:
180^(1/2) * x^(13/2) * y^(20/2) * z^(-4/2)
= (sqrt180) [x^(13/2)] [y^10] [z^-2]
= 6sqrt5 [x^(13/2)] [y^10] [z^-2]