how do i approximate the real zeros of this function? to two decimal places?
f(x) = 7 - 2x^2 + 2^-x
f '(x) = -4 x - (2^(-x)) ln(2)
guess x = -4
xn+1= y(xn)-y(xn)/y'(xn)
y= 7 - 2 * x ^ 2 + 2 ^ (-x)
y'= -4*x-2^(-x)*LN(2)
0 -4 -9 +4.90965 -1.83313
1 -2.16687 +2.09981 +5.55492 +0.37801
2 -2.54488 -0.11725 +6.13460 -0.01911
3 -2.52577 -0.00022 +6.11138 -0.0000361
x = -2.52577
guess x = 2
N x______ y______ y'______ y/y'______
0 +2 -3/4 -8.17329 +0.09176
1 +1.90824 -0.01632 -7.81762 +0.00209
2 +1.90615 -8.4E-06 -7.80953 +1.08089E-06
x=1.90615
0 -10 +831 -669.78271 -1.24070
1 -8.75930 +286.87239 -265.31944 -1.08123
2 -7.67807 +93.89367 -111.24362 -0.84404
3 -6.83403 +27.68211 -51.74505 -0.53497
4 -6.29906 +6.38553 -29.38341 -0.21732
5 -6.08174 +0.75567 -22.62045 -0.03341
6 -6.04833 +0.01579 -21.67947 -0.00073
7 -6.04761 7.368E-06 -21.65923 -3.40187E-07
x=-6.04761
Copyright © 2025 Q2A.ES - All rights reserved.
Answers & Comments
Verified answer
f(x) = 7 - 2x^2 + 2^-x
f '(x) = -4 x - (2^(-x)) ln(2)
guess x = -4
xn+1= y(xn)-y(xn)/y'(xn)
y= 7 - 2 * x ^ 2 + 2 ^ (-x)
y'= -4*x-2^(-x)*LN(2)
0 -4 -9 +4.90965 -1.83313
1 -2.16687 +2.09981 +5.55492 +0.37801
2 -2.54488 -0.11725 +6.13460 -0.01911
3 -2.52577 -0.00022 +6.11138 -0.0000361
x = -2.52577
guess x = 2
N x______ y______ y'______ y/y'______
0 +2 -3/4 -8.17329 +0.09176
1 +1.90824 -0.01632 -7.81762 +0.00209
2 +1.90615 -8.4E-06 -7.80953 +1.08089E-06
x=1.90615
N x______ y______ y'______ y/y'______
0 -10 +831 -669.78271 -1.24070
1 -8.75930 +286.87239 -265.31944 -1.08123
2 -7.67807 +93.89367 -111.24362 -0.84404
3 -6.83403 +27.68211 -51.74505 -0.53497
4 -6.29906 +6.38553 -29.38341 -0.21732
5 -6.08174 +0.75567 -22.62045 -0.03341
6 -6.04833 +0.01579 -21.67947 -0.00073
7 -6.04761 7.368E-06 -21.65923 -3.40187E-07
x=-6.04761