a) Using the identity for cos(A+B), prove that cos° = 1 - 2 sin^2 (1/2 °)
° = feta
b) prove that 1 + sin° - cos° = sin (1/2 °)[cos (1/2 °) + sin (1/2 °)]
c) hence, or otherwise, solve the equation
1 + sin° - cos° = 0, 0</= ° < 2pi
Copyright © 2024 Q2A.ES - All rights reserved.
Answers & Comments
Verified answer
a) The Identity is : Cos(A + B) = CosAcosB - Sin ASinB
Cosθ = Cos(½θ + ½θ) = Cos½θCos½θ - Sin½θSin½θ = Cos²(½θ) - Sin²(½θ)
Now use the Identity Cos²A + Sin²A = 1 ⇒⇒ Cos² = 1 - Sin²A
Cos²(½θ) - Sin²(½θ) = 1 - Sin²(½θ) - Sin²(½θ) = 1 - 2Sin²(½θ).
b) Use the Identity Sin(A + B) = SinACosB + CosASinB and the above proof.
Sinθ = Sin½θCos½θ + Cos½θSin½θ = 2Sin½θCos½θ
Then, 1 + Sinθ - Cosθ = 1 + 2Sin½θCos½θ - [1 - 2Sin²(½θ)] = 2Sin½θCos½θ + 2Sin²(½θ)
= 2Sin(½θ)[Cos(½θ) + Sin(½θ)]
NOTE : This isn't quite the answer provided by you but I'm hoping there's a typing error in your question and the coefficient of 2 has been overlooked.
c) If, 1 + Sinθ - Cosθ = 0, then we can substitute the alternative identity :-
2Sin(½θ)[Cos(½θ) + Sin(½θ)] = 0
So either Sin(½θ) = 0 then (½θ) = 0
or, Cos(½θ) + Sin(½θ) = 0 which means, Cos(½θ) = - Sin(½θ) : 1 = -Sin(½θ) / Cos(½θ = -Tan(½θ)
Tan(½θ) = -1 .......thus ½θ = ¾π and therefore θ = 3π/2 which is in the range 0 ≤ θ ≤ 2π.