The complex number w has modulus 1 and argument 2X radians.
Show that w-1/w+1=itan(X)
w = cos(2x) + i sin(2x)
DON'T FORGET PARENTHESES:
(w−1) / (w+1)
= (cos(2x) + i sin(2x) − 1) / (cos(2x) + i sin(2x) + 1)
= (cos(2x) + i sin(2x) − 1)(cos(2x) − i sin(2x) + 1) / [(cos(2x) + i sin(2x) + 1)(cos(2x) − i sin(2x) + 1)]
= [cos²(2x) − (i sin(2x) − 1)²] / [(cos(2x)+1)² − (i sin(2x))²]
= [cos²(2x) − (−sin²(2x) − 2i sin(2x) + 1)] / [(cos²(2x) + 2 cos(2x) + 1) − (−sin²(2x))]
= (2i sin(2x)) / (2 + 2 cos(2x))
= i sin(2x) / (1 + cos(2x))
= i * 2 sinx cosx / (1 + 2 cos²x − 1)
= i * 2 sinx cosx / (2 cos²x)
= i sinx/cosx
= i tanx
As written, the equation is false.
Perhaps you mean
.. (w-1)/(w+1) = i*tan(X)
Multiply by (w+1)*, i.e. the conjugate of w+1. Use w =cos(2X) +i*sin(2X).
.. = (w-1)(w+1)*/(2(cos(2X)+1))
.. = i*sin(2X)/(cos(2X)+1)
.. = i*tan(X) ... by the half-angle identity
w = cos 2x + i sin 2x
If you write the number in exponential form, it's even easier.
w = e^(2xi)
(w-1) / (w+1)
. = [e^(2xi) - 1] / [e^(2xi) + 1]
. = [e^(xi) - e^(-xi)] / [e^(xi) + e^(-xi)]
. = i * [ (e^(xi) - e^(-xi) ) / (2i) ] / [ (e^(xi) + e^(-xi)) / 2 ]
. = i * sin(x) / cos(x)
. = i * tan(x).
Copyright © 2024 Q2A.ES - All rights reserved.
Answers & Comments
Verified answer
w = cos(2x) + i sin(2x)
DON'T FORGET PARENTHESES:
(w−1) / (w+1)
= (cos(2x) + i sin(2x) − 1) / (cos(2x) + i sin(2x) + 1)
= (cos(2x) + i sin(2x) − 1)(cos(2x) − i sin(2x) + 1) / [(cos(2x) + i sin(2x) + 1)(cos(2x) − i sin(2x) + 1)]
= [cos²(2x) − (i sin(2x) − 1)²] / [(cos(2x)+1)² − (i sin(2x))²]
= [cos²(2x) − (−sin²(2x) − 2i sin(2x) + 1)] / [(cos²(2x) + 2 cos(2x) + 1) − (−sin²(2x))]
= (2i sin(2x)) / (2 + 2 cos(2x))
= i sin(2x) / (1 + cos(2x))
= i * 2 sinx cosx / (1 + 2 cos²x − 1)
= i * 2 sinx cosx / (2 cos²x)
= i sinx/cosx
= i tanx
As written, the equation is false.
Perhaps you mean
.. (w-1)/(w+1) = i*tan(X)
Multiply by (w+1)*, i.e. the conjugate of w+1. Use w =cos(2X) +i*sin(2X).
.. = (w-1)(w+1)*/(2(cos(2X)+1))
.. = i*sin(2X)/(cos(2X)+1)
.. = i*tan(X) ... by the half-angle identity
w = cos 2x + i sin 2x
If you write the number in exponential form, it's even easier.
w = e^(2xi)
(w-1) / (w+1)
. = [e^(2xi) - 1] / [e^(2xi) + 1]
. = [e^(xi) - e^(-xi)] / [e^(xi) + e^(-xi)]
. = i * [ (e^(xi) - e^(-xi) ) / (2i) ] / [ (e^(xi) + e^(-xi)) / 2 ]
. = i * sin(x) / cos(x)
. = i * tan(x).