El antiguo matemático hindú Pingala presentó la primera descripción que se conoce de un sistema de numeración binario en el siglo tercero antes de nuestra era, lo cual coincidió con su descubrimiento del concepto del número cero.
Una serie completa de 8 trigramas y 64 hexagramas, análogos a 3 bit y números binarios de 6 bit, eran conocidos en la antigua china en el texto clásico del I Ching. Series similares de combinaciones binarias también han sido utilizados en sistemas de adivinación tradicionales africanos como el Ifá, así como en la geomancia medieval occidental.
Un arreglo binario ordenado de los hexagramas del I Ching, representando la secuencia decimal de 0 a 63, y un método para generar el mismo, fue desarrollado por el erudito y filósofo Chino Shao Yong en el siglo XI. Sin embargo, no hay ninguna prueba de que Shao entendió el cómputo binario.
En 1605 Francis Bacon habló de un sistema por el cual las letras del alfabeto podrían reducirse a secuencias de dígitos binarios, la cuales podrían ser codificados como variaciones apenas visibles en la fuente de cualquier texto arbitrario.
El sistema binario moderno fue documentado en su totalidad por Leibniz, en el siglo diecisiete, en su artículo "Explication de l'Arithmétique Binaire". En él se mencionan los símbolos binarios usados por matemáticos chinos. Leibniz usó el 0 y el 1, al igual que el sistema de numeración binario actual.
En 1854, el matemático británico George Boole, publicó un artículo que marcó un antes y un después, detallando un sistema de lógica que terminaría denominándose Álgebra de Boole. Dicho sistema desempeñaría un papel fundamental en el desarrollo del sistema binario actual, particularmente en el desarrollo de circuitos electrónicos.
En 1937, Claude Shannon realizó su tesis doctoral en el MIT, en la cual implementaba el Álgebra de Boole y aritmética binaria utilizando relés y conmutadores por primera vez en la historia. Titulada Un Análisis Simbólico de Circuitos Conmutadores y Relés, la tesis de Shannon básicamente fundó el diseño práctico de circuitos digitales.
En noviembre de 1937, George Stibitz, trabajando por aquel entonces en los Laboratorios Bell, construyó un ordenador basado en relés - al cual apodó "Modelo K" (porque lo construyó en una cocina, en inglés "kitchen")- que utilizaba la suma binaria para realizar los cálculos. Los Laboratorios Bell autorizaron un completo programa de investigación a finales de 1938, con Stibitz al mando. El 8 de enero de 1940 terminaron el diseño de una Calculadora de Números Complejos, la cual era capaz de realizar cálculos con números complejos. En una demostración en la conferencia de la Sociedad Americana de Matemáticas, el 11 de septiembre de 1940, Stibitz logró enviar comandos de manera remota a la Calculadora de Números Complejos a través de la línea telefónica mediante un teletipo. Fue la primera máquina computadora utilizada de manera remota a través de la línea de teléfono. Algunos participantes de la conferencia que presenciaron la demostración fueron John Von Neumann, John Mauchly y Norbert Wiener, el cual escribió acerca de dicho suceso en sus diferentes tipos de memorias en la cual alcanzó diferentes logros.
Pero es util para representar o trabajar con sistema que posen 2 estados.
El primer digito es 0 o 1 el siguiente que tmb es 0 o 1 ya tiene un valor de 0 o 2, el siguiente de 0 o 4. Y todo se suma para lograr la magnitud deseada. Esto puede ser incluso utilizado con ausencia o presencia de un sonido, asi que es demasiado antigua su utilizacion como codigo binario aunq no tanto como sistema binario formalmente.
Segun wikipedia
Historia del sistema binario [editar]
Página del artículo Explication de l'Arithmétique Binaire de Leibniz
El antiguo matemático hindú Pingala presentó la primera descripción que se conoce de un sistema de numeración binario en el siglo tercero antes de nuestra era, lo cual coincidió con su descubrimiento del concepto del número cero.
Una serie completa de 8 trigramas y 64 hexagramas, análogos a 3 bit y números binarios de 6 bit, eran conocidos en la antigua china en el texto clásico del I Ching. Series similares de combinaciones binarias también han sido utilizados en sistemas de adivinación tradicionales africanos como el Ifá, así como en la geomancia medieval occidental.
Un arreglo binario ordenado de los hexagramas del I Ching, representando la secuencia decimal de 0 a 63, y un método para generar el mismo, fue desarrollado por el erudito y filósofo Chino Shao Yong en el siglo XI. Sin embargo, no hay ninguna prueba de que Shao entendió el cómputo binario.
En 1605 Francis Bacon habló de un sistema por el cual las letras del alfabeto podrían reducirse a secuencias de dígitos binarios, la cuales podrían ser codificados como variaciones apenas visibles en la fuente de cualquier texto arbitrario.
El sistema binario moderno fue documentado en su totalidad por Leibniz, en el siglo diecisiete, en su artículo "Explication de l'Arithmétique Binaire". En él se mencionan los símbolos binarios usados por matemáticos chinos. Leibniz usó el 0 y el 1, al igual que el sistema de numeración binario actual.
En 1854, el matemático británico George Boole, publicó un artículo que marcó un antes y un después, detallando un sistema de lógica que terminaría denominándose Álgebra de Boole. Dicho sistema desempeñaría un papel fundamental en el desarrollo del sistema binario actual, particularmente en el desarrollo de circuitos electrónicos.
En 1937, Claude Shannon realizó su tesis doctoral en el MIT, en la cual implementaba el Álgebra de Boole y aritmética binaria utilizando relés y conmutadores por primera vez en la historia. Titulada Un Análisis Simbólico de Circuitos Conmutadores y Relés, la tesis de Shannon básicamente fundó el diseño práctico de circuitos digitales.
En noviembre de 1937, George Stibitz, trabajando por aquel entonces en los Laboratorios Bell, construyó un ordenador basado en relés - al cual apodó "Modelo K" (porque lo construyó en una cocina, en inglés "kitchen")- que utilizaba la suma binaria para realizar los cálculos. Los Laboratorios Bell autorizaron un completo programa de investigación a finales de 1938, con Stibitz al mando. El 8 de enero de 1940 terminaron el diseño de una Calculadora de Números Complejos, la cual era capaz de realizar cálculos con números complejos. En una demostración en la conferencia de la Sociedad Americana de Matemáticas, el 11 de septiembre de 1940, Stibitz logró enviar comandos de manera remota a la Calculadora de Números Complejos a través de la línea telefónica mediante un teletipo. Fue la primera máquina computadora utilizada de manera remota a través de la línea de teléfono. Algunos participantes de la conferencia que presenciaron la demostración fueron John Von Neumann, John Mauchly y Norbert Wiener, el cual escribió acerca de dicho suceso en sus diferentes tipos de memorias en la cual alcanzó diferentes logros.
Answers & Comments
Verified answer
hola
espero me des los 10 puntos!!!!!!!!!!!
El antiguo matemático hindú Pingala presentó la primera descripción que se conoce de un sistema de numeración binario en el siglo tercero antes de nuestra era, lo cual coincidió con su descubrimiento del concepto del número cero.
Una serie completa de 8 trigramas y 64 hexagramas, análogos a 3 bit y números binarios de 6 bit, eran conocidos en la antigua china en el texto clásico del I Ching. Series similares de combinaciones binarias también han sido utilizados en sistemas de adivinación tradicionales africanos como el Ifá, así como en la geomancia medieval occidental.
Un arreglo binario ordenado de los hexagramas del I Ching, representando la secuencia decimal de 0 a 63, y un método para generar el mismo, fue desarrollado por el erudito y filósofo Chino Shao Yong en el siglo XI. Sin embargo, no hay ninguna prueba de que Shao entendió el cómputo binario.
En 1605 Francis Bacon habló de un sistema por el cual las letras del alfabeto podrían reducirse a secuencias de dígitos binarios, la cuales podrían ser codificados como variaciones apenas visibles en la fuente de cualquier texto arbitrario.
El sistema binario moderno fue documentado en su totalidad por Leibniz, en el siglo diecisiete, en su artículo "Explication de l'Arithmétique Binaire". En él se mencionan los símbolos binarios usados por matemáticos chinos. Leibniz usó el 0 y el 1, al igual que el sistema de numeración binario actual.
En 1854, el matemático británico George Boole, publicó un artículo que marcó un antes y un después, detallando un sistema de lógica que terminaría denominándose Álgebra de Boole. Dicho sistema desempeñaría un papel fundamental en el desarrollo del sistema binario actual, particularmente en el desarrollo de circuitos electrónicos.
En 1937, Claude Shannon realizó su tesis doctoral en el MIT, en la cual implementaba el Álgebra de Boole y aritmética binaria utilizando relés y conmutadores por primera vez en la historia. Titulada Un Análisis Simbólico de Circuitos Conmutadores y Relés, la tesis de Shannon básicamente fundó el diseño práctico de circuitos digitales.
En noviembre de 1937, George Stibitz, trabajando por aquel entonces en los Laboratorios Bell, construyó un ordenador basado en relés - al cual apodó "Modelo K" (porque lo construyó en una cocina, en inglés "kitchen")- que utilizaba la suma binaria para realizar los cálculos. Los Laboratorios Bell autorizaron un completo programa de investigación a finales de 1938, con Stibitz al mando. El 8 de enero de 1940 terminaron el diseño de una Calculadora de Números Complejos, la cual era capaz de realizar cálculos con números complejos. En una demostración en la conferencia de la Sociedad Americana de Matemáticas, el 11 de septiembre de 1940, Stibitz logró enviar comandos de manera remota a la Calculadora de Números Complejos a través de la línea telefónica mediante un teletipo. Fue la primera máquina computadora utilizada de manera remota a través de la línea de teléfono. Algunos participantes de la conferencia que presenciaron la demostración fueron John Von Neumann, John Mauchly y Norbert Wiener, el cual escribió acerca de dicho suceso en sus diferentes tipos de memorias en la cual alcanzó diferentes logros.
salu2
Ignaciomolin
Dios al crear el mudo, hizo dos, Adan y Eva.
El origen no se.
Pero es util para representar o trabajar con sistema que posen 2 estados.
El primer digito es 0 o 1 el siguiente que tmb es 0 o 1 ya tiene un valor de 0 o 2, el siguiente de 0 o 4. Y todo se suma para lograr la magnitud deseada. Esto puede ser incluso utilizado con ausencia o presencia de un sonido, asi que es demasiado antigua su utilizacion como codigo binario aunq no tanto como sistema binario formalmente.
Segun wikipedia
Historia del sistema binario [editar]
Página del artículo Explication de l'Arithmétique Binaire de Leibniz
El antiguo matemático hindú Pingala presentó la primera descripción que se conoce de un sistema de numeración binario en el siglo tercero antes de nuestra era, lo cual coincidió con su descubrimiento del concepto del número cero.
Una serie completa de 8 trigramas y 64 hexagramas, análogos a 3 bit y números binarios de 6 bit, eran conocidos en la antigua china en el texto clásico del I Ching. Series similares de combinaciones binarias también han sido utilizados en sistemas de adivinación tradicionales africanos como el Ifá, así como en la geomancia medieval occidental.
Un arreglo binario ordenado de los hexagramas del I Ching, representando la secuencia decimal de 0 a 63, y un método para generar el mismo, fue desarrollado por el erudito y filósofo Chino Shao Yong en el siglo XI. Sin embargo, no hay ninguna prueba de que Shao entendió el cómputo binario.
En 1605 Francis Bacon habló de un sistema por el cual las letras del alfabeto podrían reducirse a secuencias de dígitos binarios, la cuales podrían ser codificados como variaciones apenas visibles en la fuente de cualquier texto arbitrario.
El sistema binario moderno fue documentado en su totalidad por Leibniz, en el siglo diecisiete, en su artículo "Explication de l'Arithmétique Binaire". En él se mencionan los símbolos binarios usados por matemáticos chinos. Leibniz usó el 0 y el 1, al igual que el sistema de numeración binario actual.
En 1854, el matemático británico George Boole, publicó un artículo que marcó un antes y un después, detallando un sistema de lógica que terminaría denominándose Álgebra de Boole. Dicho sistema desempeñaría un papel fundamental en el desarrollo del sistema binario actual, particularmente en el desarrollo de circuitos electrónicos.
En 1937, Claude Shannon realizó su tesis doctoral en el MIT, en la cual implementaba el Álgebra de Boole y aritmética binaria utilizando relés y conmutadores por primera vez en la historia. Titulada Un Análisis Simbólico de Circuitos Conmutadores y Relés, la tesis de Shannon básicamente fundó el diseño práctico de circuitos digitales.
En noviembre de 1937, George Stibitz, trabajando por aquel entonces en los Laboratorios Bell, construyó un ordenador basado en relés - al cual apodó "Modelo K" (porque lo construyó en una cocina, en inglés "kitchen")- que utilizaba la suma binaria para realizar los cálculos. Los Laboratorios Bell autorizaron un completo programa de investigación a finales de 1938, con Stibitz al mando. El 8 de enero de 1940 terminaron el diseño de una Calculadora de Números Complejos, la cual era capaz de realizar cálculos con números complejos. En una demostración en la conferencia de la Sociedad Americana de Matemáticas, el 11 de septiembre de 1940, Stibitz logró enviar comandos de manera remota a la Calculadora de Números Complejos a través de la línea telefónica mediante un teletipo. Fue la primera máquina computadora utilizada de manera remota a través de la línea de teléfono. Algunos participantes de la conferencia que presenciaron la demostración fueron John Von Neumann, John Mauchly y Norbert Wiener, el cual escribió acerca de dicho suceso en sus diferentes tipos de memorias en la cual alcanzó diferentes logros.
sabra Dios