det(2A-B)^-1
es decir... determinante de la inversa de 2A-B
Segun yo, los pasos son:
1. 2A
2. 2A-B
Luego obtengo la inversa por medio de determinantes:
3. det 2A-B
4. transpuesta de 2A-B (es decir 2A-B^t)
5. adj de lo anterior (2A-B^t)
6. mutiplico: 1/det2A-B * adj2A-B^t = (2A-B)^1
y ahora ya tengo la inversa de 2A-B (es decir ( 2A-B)^-1 )
ahora le tengo que sacar el determinante a lo anterior para completar lo que me piden?
tengo mi duda porque mis numeros quebrados son algo grandes (el determinante es -1627), entonces a la hora de volver a sacar el determinante de esta inversa, me quedan puntos decimales y no creo que tenga que salir asi?
no te pido que lo hagas, pues es un tanto aburrido estar haciendo esto, pero por si no supe explicar mis pasos y me quisieras ayudar, aca te dejo las matrices y la operacion mas claro:
http://oi40.tinypic.com/2qtlcv7.jpg
esto es lo que yo hice (perdon los feos numeros :D y obvien que hay la operacion dice 2A-C, es lo mismo, y ya no termine sacando el determinante de lo ultimo porque en la calculadora me quedaban esos numeros con puntos decimales)
http://oi44.tinypic.com/2ms1nxe.jpg
Copyright © 2024 Q2A.ES - All rights reserved.
Answers & Comments
Verified answer
En el siguiente vínculo te explican cómo hallar la inversa de una matriz por el método de determinantes:
http://www.ditutor.com/matrices/matriz_inversa.htm...
En los siguientes vínculos encuentras explicaciones para hallar el determinanate asociado a una matriz.
http://www.psico.uniovi.es/dpto_psicologia/metodos...
http://sauce.pntic.mec.es/~jpeo0002/Archivos/PDF/T...
(pág. 95)
http://docencia.udea.edu.co/GeometriaVectorial/uni...
Si haciendo los pasos con cuidado obtienes fracciones muy grandes, no te preocupes que esos serán los resultados. Tal vez tu profesor no resolvió el ejercicio antes de proponerlo. Pero en la práctica de la vida real, es más probable que los resultados sean de números fraccionarios.
Saludos desde Colombia