x^2 - x - 12
----------------
....(x-4)
(x-4)(x+3)
--------------
...(x-4)
(x+3)
.
X^2-X-12/X-4
(X-4)(X+3)/X-4
=(X+3)
=X+3
there are 2 ways
1.the long way
substitution
we put x-4=0
x=4
then substitute this value in equation
(4)2 - 4 - 12=0 that is x-4 is its factor
then the dividend theorem
dividend = divisor *quotient +remainder
x2 - x - 12= (x-4) ?*q+0
q = x2 - x - 12 /x-4
q= x+3
2. short way
directly divide x2-x-12 by x-4
quotient -= x+3
(x^2 - x - 12)/(x - 4)
= (x^2 + 3x - 4x - 12)/(x - 4)
= [(x^2 + 3x) - (4x + 12)]/(x - 4)
= [x(x + 3) - 4(x + 3)]/(x - 4)
= (x + 3)(x - 4)/(x - 4)
= x + 3
(x^2 - x - 12) / (x - 4)
(x - 4)(x + 3) / (x 4)
(x + 3) / 1
x + 3
= (x² - x - 12)/(x - 4)
= ([x + 3][x - 4])/(x - 4)
Answer: x + 3
x^2-x-12
------------ =
x-4
---------------- =
x+3
Copyright © 2025 Q2A.ES - All rights reserved.
Answers & Comments
Verified answer
x^2 - x - 12
----------------
....(x-4)
(x-4)(x+3)
--------------
...(x-4)
(x+3)
.
X^2-X-12/X-4
(X-4)(X+3)/X-4
=(X+3)
=X+3
there are 2 ways
1.the long way
substitution
we put x-4=0
x=4
then substitute this value in equation
(4)2 - 4 - 12=0 that is x-4 is its factor
then the dividend theorem
dividend = divisor *quotient +remainder
x2 - x - 12= (x-4) ?*q+0
q = x2 - x - 12 /x-4
q= x+3
2. short way
directly divide x2-x-12 by x-4
quotient -= x+3
(x^2 - x - 12)/(x - 4)
= (x^2 + 3x - 4x - 12)/(x - 4)
= [(x^2 + 3x) - (4x + 12)]/(x - 4)
= [x(x + 3) - 4(x + 3)]/(x - 4)
= (x + 3)(x - 4)/(x - 4)
= x + 3
(x^2 - x - 12) / (x - 4)
(x - 4)(x + 3) / (x 4)
(x + 3) / 1
x + 3
= (x² - x - 12)/(x - 4)
= ([x + 3][x - 4])/(x - 4)
= x + 3
Answer: x + 3
x^2-x-12
------------ =
x-4
(x-4)(x+3)
---------------- =
x-4
x+3