La Criba de Eratóstenes consiste en eliminar los números que no sean primos y que por tanto sean múltiplos de algún número.
Para obtener los 150 primeros números primos, en la siguiente tabla, a partir del 2, se van marcando (nosotros los hemos puesto sin negrita) todos los números saltando de 2 en 2. A continuación, a partir del 3, todos los números de 3 en 3, y así sucesivamente. Los números que quedan sin negrita (los que están en negrita), son los números primos.
La criba de Eratóstenes es un algoritmo que permite hallar todos los números primos menores que un número natural dado n. Se forma una tabla con todos los números naturales comprendidos entre 2 y n, y se van tachando los números que no son primos de la siguiente manera: Comenzando por el 2, se tachan todos sus múltiplos; comenzando de nuevo, cuando se encuentra un número entero que no ha sido tachado, ese número es declarado primo, y se procede a tachar todos sus múltiplos, así sucesivamente. El proceso termina cuando el cuadrado del mayor número confirmado como primo es mayor que n.
Índice [ocultar]
1 Proceso de criba
1.1 Refinamiento
Proceso de criba[editar]
Determinemos, mediante el siguiente ejemplo, el proceso para determinar la lista de los números primos menores de 20.
Primer paso: listar los números naturales comprendidos entre 2 y 20.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2. Segundo paso: Se toma el primer número no rayado ni marcado, como número primo.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
3. Tercer paso: Se tachan todos los múltiplos del número que se acaba de indicar como primo.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
4. Cuarto paso: Si el cuadrado del primer número que no ha sido rayado ni marcado es inferior a 20, entonces se repite el segundo paso. Si no, el algoritmo termina, y todos los enteros no tachados son declarados primos.
Como 3² = 9 < 20, se vuelve al segundo paso:
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
En el cuarto paso, el primer número que no ha sido tachado ni marcado es 5. Como su cuadrado es mayor que 20, el algoritmo termina y se consideran primos todos los números que no han sido tachados.
Como resultado se obtienen los números primos comprendidos entre 2 y 20, y estos son: 2, 3, 5, 7, 11, 13, 17, 19.
Refinamiento[editar]
Un refinamiento de la criba consiste en tachar los múltiplos del k-ésimo número primo pk, comenzando por pk2 pues en los anteriores pasos se habían tachado los múltiplos de pk correspondientes a todos los anteriores números primos, esto es, 2pk, 3pk, 5pk,..., hasta (pk-1)pk. El algoritmo acabaría cuando p2k>n ya que no habría nada que tachar.1
La criba de Eratóstenes es un algoritmo que permite hallar todos los números primos menores que un número natural dado N. Se forma una tabla con todos los números naturales comprendidos entre 2 y N y se van tachando los números que no son primos de la siguiente manera: cuando se encuentra un entero que no ha sido tachado, ese número es declarado primo, y se procede a tachar todos sus múltiplos. El proceso termina cuando el cuadrado del mayor número confirmado como primo es mayor que N.
La Criba de Eratóstenes es un procedimiento para determinar todos los números primos hasta cierto número natural dado. También se llama Criba de Eratóstenes a la tabla resultante de este proceso. El proceso consiste en ...
Answers & Comments
Verified answer
La Criba de Eratóstenes consiste en eliminar los números que no sean primos y que por tanto sean múltiplos de algún número.
Para obtener los 150 primeros números primos, en la siguiente tabla, a partir del 2, se van marcando (nosotros los hemos puesto sin negrita) todos los números saltando de 2 en 2. A continuación, a partir del 3, todos los números de 3 en 3, y así sucesivamente. Los números que quedan sin negrita (los que están en negrita), son los números primos.
SI TE INTERESA MAS VISITA:
http://enebro.cnice.mecd.es/~jhep0004/Paginas/Elen...
Que es la criba de Eratóstenes?
La criba de Eratóstenes es un algoritmo que permite hallar todos los números primos menores que un número natural dado n. Se forma una tabla con todos los números naturales comprendidos entre 2 y n, y se van tachando los números que no son primos de la siguiente manera: Comenzando por el 2, se tachan todos sus múltiplos; comenzando de nuevo, cuando se encuentra un número entero que no ha sido tachado, ese número es declarado primo, y se procede a tachar todos sus múltiplos, así sucesivamente. El proceso termina cuando el cuadrado del mayor número confirmado como primo es mayor que n.
Índice [ocultar]
1 Proceso de criba
1.1 Refinamiento
Proceso de criba[editar]
Determinemos, mediante el siguiente ejemplo, el proceso para determinar la lista de los números primos menores de 20.
Primer paso: listar los números naturales comprendidos entre 2 y 20.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2. Segundo paso: Se toma el primer número no rayado ni marcado, como número primo.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
3. Tercer paso: Se tachan todos los múltiplos del número que se acaba de indicar como primo.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
4. Cuarto paso: Si el cuadrado del primer número que no ha sido rayado ni marcado es inferior a 20, entonces se repite el segundo paso. Si no, el algoritmo termina, y todos los enteros no tachados son declarados primos.
Como 3² = 9 < 20, se vuelve al segundo paso:
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
En el cuarto paso, el primer número que no ha sido tachado ni marcado es 5. Como su cuadrado es mayor que 20, el algoritmo termina y se consideran primos todos los números que no han sido tachados.
Como resultado se obtienen los números primos comprendidos entre 2 y 20, y estos son: 2, 3, 5, 7, 11, 13, 17, 19.
Refinamiento[editar]
Un refinamiento de la criba consiste en tachar los múltiplos del k-ésimo número primo pk, comenzando por pk2 pues en los anteriores pasos se habían tachado los múltiplos de pk correspondientes a todos los anteriores números primos, esto es, 2pk, 3pk, 5pk,..., hasta (pk-1)pk. El algoritmo acabaría cuando p2k>n ya que no habría nada que tachar.1
es encontrar los numeros primos y tambien multiplos de 2,3,5,7,10,11,13
que se van
La criba de Eratóstenes es un algoritmo que permite hallar todos los números primos menores que un número natural dado N. Se forma una tabla con todos los números naturales comprendidos entre 2 y N y se van tachando los números que no son primos de la siguiente manera: cuando se encuentra un entero que no ha sido tachado, ese número es declarado primo, y se procede a tachar todos sus múltiplos. El proceso termina cuando el cuadrado del mayor número confirmado como primo es mayor que N.
EN TU CACA
La Criba de Eratóstenes es un procedimiento para determinar todos los números primos hasta cierto número natural dado. También se llama Criba de Eratóstenes a la tabla resultante de este proceso. El proceso consiste en ...
en encontrar mas rapido
los numeros primos