Como resolver esta integral
∫x senx tg x dx
sinx*tgx= sin^2(x)/cos x
sin^2(x)=1-cos^2(x)
=> sinx*tgx = sin^2(x)/cos x = 1/cosx - cos^2(x)/cos(x) = 1/cosx - cosx
Integral of cosx is sinx.
Integral of 1/cosx is ln(1/cosx - tgx).
-------------------------------------
result: Integral(sinx*tgx)= ln(1/cosx - tgx) - sinx
Copyright © 2024 Q2A.ES - All rights reserved.
Answers & Comments
Verified answer
sinx*tgx= sin^2(x)/cos x
sin^2(x)=1-cos^2(x)
=> sinx*tgx = sin^2(x)/cos x = 1/cosx - cos^2(x)/cos(x) = 1/cosx - cosx
Integral of cosx is sinx.
Integral of 1/cosx is ln(1/cosx - tgx).
-------------------------------------
result: Integral(sinx*tgx)= ln(1/cosx - tgx) - sinx