given: y= integral tan^2 (4x) /((x-5)tan 4x + tan^2 (4x)) and h= integral (4x^2-20x+25)/(4x^2+(2 tan 4x - 20)x + 5 (-tan 4x + 5)
Given:
y = ∫ tan²(4x) /[(x-5)tan 4x + tan²(4x)]dx and
h = ∫ (4x² - 20x + 25)/[4x² + (2 tan4x - 20)x + 5 ( -tan 4x + 5)] dx
First, y can be reduced to y = ∫ tan(4x) /[(x-5)+ tan(4x)] dx.
Now let's rearrange h. Numerator can be written as complete square 4x² - 20x + 25 = (2x - 5)².
Let's factor the denominator:
4x² + (2 tan4x - 20)x + 5 ( -tan 4x + 5) = 0
D = (2 tan4x - 20)² - 4·4·5 ( -tan 4x + 5) = 4tan²4x - 80tan4x + 400 - 400 + 80tan4x = 4tan²4x
x1 = (-2tan4x + 20 + 2tan4x)/8 = 20/8 = 5/2 ,
x2 = (-2tan4x + 20 - 2tan4x)/8 = (20 - 4tan4x)/8 = (5 - tan4x)/2 ,
Then
4x² + (2 tan4x - 20)x + 5 ( -tan 4x + 5) = 4(x - 5/2)(x - 5/2 + (tan4x)/2) or
4x² + (2 tan4x - 20)x + 5 ( -tan 4x + 5) = (2x - 5)(2x - 5 + tan4x) .
Coming back to the integral h:
h = ∫ (2x - 5)²/[(2x - 5)(2x - 5 + tan4x)] dx = ∫ (2x - 5)/(2x - 5 + tan4x) dx .
So
y + h = ∫ tan(4x) /[(x-5)+ tan(4x)] dx + ∫ (2x - 5)/(2x - 5 + tan4x) dx.
I assume there is a typo in the denominator of the first integral, it should be [(2x-5)+ tan(4x)].
In such a case
y + h = ∫ (tan4x + 2x - 5)/(2x - 5 + tan4x) dx = ∫ dx = x + C.
Initial integral becomes ∫ (y + h) tan 4x dx = ∫ (x + C) tan 4x dx.
Copyright © 2024 Q2A.ES - All rights reserved.
Answers & Comments
Verified answer
Given:
y = ∫ tan²(4x) /[(x-5)tan 4x + tan²(4x)]dx and
h = ∫ (4x² - 20x + 25)/[4x² + (2 tan4x - 20)x + 5 ( -tan 4x + 5)] dx
First, y can be reduced to y = ∫ tan(4x) /[(x-5)+ tan(4x)] dx.
Now let's rearrange h. Numerator can be written as complete square 4x² - 20x + 25 = (2x - 5)².
Let's factor the denominator:
4x² + (2 tan4x - 20)x + 5 ( -tan 4x + 5) = 0
D = (2 tan4x - 20)² - 4·4·5 ( -tan 4x + 5) = 4tan²4x - 80tan4x + 400 - 400 + 80tan4x = 4tan²4x
x1 = (-2tan4x + 20 + 2tan4x)/8 = 20/8 = 5/2 ,
x2 = (-2tan4x + 20 - 2tan4x)/8 = (20 - 4tan4x)/8 = (5 - tan4x)/2 ,
Then
4x² + (2 tan4x - 20)x + 5 ( -tan 4x + 5) = 4(x - 5/2)(x - 5/2 + (tan4x)/2) or
4x² + (2 tan4x - 20)x + 5 ( -tan 4x + 5) = (2x - 5)(2x - 5 + tan4x) .
Coming back to the integral h:
h = ∫ (2x - 5)²/[(2x - 5)(2x - 5 + tan4x)] dx = ∫ (2x - 5)/(2x - 5 + tan4x) dx .
So
y + h = ∫ tan(4x) /[(x-5)+ tan(4x)] dx + ∫ (2x - 5)/(2x - 5 + tan4x) dx.
I assume there is a typo in the denominator of the first integral, it should be [(2x-5)+ tan(4x)].
In such a case
y + h = ∫ (tan4x + 2x - 5)/(2x - 5 + tan4x) dx = ∫ dx = x + C.
Initial integral becomes ∫ (y + h) tan 4x dx = ∫ (x + C) tan 4x dx.