Hi
Can any one solve these:
Simplify the Boolean function using Boolean algebra
1: A'B'C + A'BC + AB'C' + ABC'
2: A'B'C' + A'BC' +A'BC' +AB'C
3: A'BC'D +A'BCD + ABC'D +ABCD
4: ABC'D + AB'C'D + A'BCD + AB'CD +A'BCD'
Copyright © 2024 Q2A.ES - All rights reserved.
Answers & Comments
Verified answer
I'll try to explain the processes for the first in greater depth.
1:
p = A'B'C + A'BC + AB'C' + ABC'
Group first two terms and factor A' from each, and
group last two terms and factor A from each.
p = A'(B'C + BC) + A(B'C' + BC')
Factor C from parenthesized terms of first expression, and
factor C' from parenthesized terms of second expression.
p = A'(B' + B)C + A(B' + B)C'
Evaluate expression that are equivalent to the universe.
p = A'(1)C + A(1)C'
Eliminate universe terms.
p = A'C + AC'
Using a slightly different form of notation than what you've provided, the correctness of the simplifications can be checked using the Truth Table Generator at:
http://turner.faculty.swau.edu/mathematics/materia...
A'B'C + A'BC + AB'C' + ABC' = A'C + AC'
can be rewritten as
~A&~B&C + ~A&B&C + A&~B&~C + A&B&~C = ~A&C + A&~C
for input to the generator.
2:
p = A'B'C' + A'BC' + A'BC' + AB'C
= A'(B'C' + BC' + BC') + AB'C
= A'(B' + B + B)C' + AB'C
= A'(B' + B)C' + AB'C
= A'(1)C' + AB'C
= A'C' + AB'C
~A&~B&~C + ~A&B&~C + ~A&B&~C + A&~B&C = ~A&~C + A&~B&C
3:
p = A'BC'D + A'BCD + ABC'D + ABCD
= A'B(C' + C)D + AB(C' + C)D
= A'B(1)D + AB(1)D
= A'BD + ABD
= (A' + A)BD
= (1)BD
= BD
~A&B&~C&D + ~A&B&C&D + A&B&~C&D + A&B&C&D = B&D
4:
p = ABC'D + AB'C'D + A'BCD + AB'CD + A'BCD'
= ABC'D + AB'C'D + AB'CD + A'BCD + A'BCD'
= A(BC'D + B'C'D + B'CD) + A'(BCD + BCD')
= A(BC' + B'C' + B'C)D + A'B(CD + CD')
= A(BC' + B'[C' + C])D + A'BC(D + D')
= A(BC' + B'[1])D + A'BC(1)
= A(BC' + B')D + A'BC
= ABC'D + AB'D + A'BC
A&B&~C&D + A&~B&~C&D + ~A&B&C&D + A&~B&C&D + ~A&B&C&~D = A&B&~C&D + A&~B&D + ~A&B&C
(had to remove the blanks to check the last one...too long for input field)