∫x^3dx - ∫xcos^2(x)dx
x^4/4 - ∫xcos^2(x)dx
cos^2(x) = (1+cos(2x))/2
x^4/4 - 1/2∫x(1+cos(2x))dx
x^4/4 - 1/2 ∫(x+xcos(2x))dx
x^4/4 - 1/4x^2 - 1/2 ∫(xcos(2x))dx
Let u=x, and dv = cos(2x)
du = dx and v = 1/2 sin(2x)
∫udv = uv - ∫vdu
∫xcos(2x)dx = x/2sin(2x) - 1/2∫sin(2x)dx
∫xcos(2x)dx = x/2sin(2x) + 1/4cos(2x)
x^4/4 - 1/4x^2 - 1/2 [x/2sin(2x) + 1/4cos(2x)]
(1/4)x^4 - (1/4)x^2 - x/4sin(2x) - 1/8cos(2x)+C
I = Êx^3dx - Êx*cos^2(x)dx
First integral is straightforward: I_1 = Êx^3dx = x^4/4
second integral we do by parts:
u = x, du = 1 ,
dv = cos^2(x) , v = Êcos^2(x) = Ê0.5cos(2x) + 0.5 dx = 0.25sin(2x) + 0.5x
the formula we need is:
I_2 = uv - Êv*du
I_2 = x[0.25sin(2x) + 0.5] - Ê0.25sin(2x) + 0.5x dx
I_2 = 1/8 * [ 2x^4 + 2xsin(2x) + cos(2x) + 2x^2]
hence the integral of the whole function is:
I = I_1 - I_2 = x^4/4 - 1/8 * [ 2x^4 + 2xsin(2x) + cos(2x) + 2x^2] + c
Copyright © 2024 Q2A.ES - All rights reserved.
Answers & Comments
Verified answer
∫x^3dx - ∫xcos^2(x)dx
x^4/4 - ∫xcos^2(x)dx
cos^2(x) = (1+cos(2x))/2
x^4/4 - 1/2∫x(1+cos(2x))dx
x^4/4 - 1/2 ∫(x+xcos(2x))dx
x^4/4 - 1/4x^2 - 1/2 ∫(xcos(2x))dx
Let u=x, and dv = cos(2x)
du = dx and v = 1/2 sin(2x)
∫udv = uv - ∫vdu
∫xcos(2x)dx = x/2sin(2x) - 1/2∫sin(2x)dx
∫xcos(2x)dx = x/2sin(2x) + 1/4cos(2x)
x^4/4 - 1/4x^2 - 1/2 [x/2sin(2x) + 1/4cos(2x)]
(1/4)x^4 - (1/4)x^2 - x/4sin(2x) - 1/8cos(2x)+C
I = Êx^3dx - Êx*cos^2(x)dx
First integral is straightforward: I_1 = Êx^3dx = x^4/4
second integral we do by parts:
u = x, du = 1 ,
dv = cos^2(x) , v = Êcos^2(x) = Ê0.5cos(2x) + 0.5 dx = 0.25sin(2x) + 0.5x
the formula we need is:
I_2 = uv - Êv*du
I_2 = x[0.25sin(2x) + 0.5] - Ê0.25sin(2x) + 0.5x dx
I_2 = 1/8 * [ 2x^4 + 2xsin(2x) + cos(2x) + 2x^2]
hence the integral of the whole function is:
I = I_1 - I_2 = x^4/4 - 1/8 * [ 2x^4 + 2xsin(2x) + cos(2x) + 2x^2] + c