the Logbase5 is a #5 very small at the end of g.
log5(2x+4) - log5(x-1) = 1
log5((2x+4)/(x-1)) = 1
(2x+4)/(x-1) = 5
2x + 4 = 5(x - 1)
3x = 9
x = 3
Answer: x = 3
Logbase5(2x+4) - Logbase5(x-1) = 1
logbase5((2x+4)/(x-1) = 1
5(x-1) = 2x+4
5x - 5 = 2x + 4
= logbase5 ((2x+4)/(x-1))
then simplify
Copyright © 2024 Q2A.ES - All rights reserved.
Answers & Comments
Verified answer
log5(2x+4) - log5(x-1) = 1
log5((2x+4)/(x-1)) = 1
(2x+4)/(x-1) = 5
2x + 4 = 5(x - 1)
3x = 9
x = 3
Answer: x = 3
Logbase5(2x+4) - Logbase5(x-1) = 1
logbase5((2x+4)/(x-1) = 1
5(x-1) = 2x+4
5x - 5 = 2x + 4
3x = 9
x = 3
= logbase5 ((2x+4)/(x-1))
then simplify