y = arctan u(x)
y' = [ 1 / (1+u²(x) )] * u'(x)
entonces
y' = [ 1 / (1+(1/x)² )] * [ 1/x] '
y' = [ 1 / (1+(1/x)² )] * [ -1/ x²]
y' = [ 1 / ((x²+1)/x² )] * [ -1/ x²]
y' = [ x² / (x²+1)] * [ -1/ x²]
y' = [ - x² / x² (x²+1)]
y' = - 1 / (x²+1)
w = arc tan [G(z)]
dw / dz = {d[G(z)] / dz} * (1+[G(z)]`2}^-1
entonces:
f(x) = arc tan(1/x)
df(x) / dx = d(1/x) / dx * (1+1/x^2)^-1
f ' (x) = (-1/ x^2 ) x^2/(1+x^2)
f ' (x) = -1/(1+x^2)
Pos la derivada de arc tg (1/x) es:
y´= -1/(x²+1)
ni idea
saludos!
Copyright © 2025 Q2A.ES - All rights reserved.
Answers & Comments
Verified answer
y = arctan u(x)
y' = [ 1 / (1+u²(x) )] * u'(x)
entonces
y' = [ 1 / (1+(1/x)² )] * [ 1/x] '
y' = [ 1 / (1+(1/x)² )] * [ -1/ x²]
y' = [ 1 / ((x²+1)/x² )] * [ -1/ x²]
y' = [ x² / (x²+1)] * [ -1/ x²]
y' = [ - x² / x² (x²+1)]
y' = - 1 / (x²+1)
w = arc tan [G(z)]
dw / dz = {d[G(z)] / dz} * (1+[G(z)]`2}^-1
entonces:
f(x) = arc tan(1/x)
df(x) / dx = d(1/x) / dx * (1+1/x^2)^-1
f ' (x) = (-1/ x^2 ) x^2/(1+x^2)
f ' (x) = -1/(1+x^2)
Pos la derivada de arc tg (1/x) es:
y´= -1/(x²+1)
ni idea
saludos!