1)Propiedad Conmutativa: a+b = b+a Sean a,b pertenecientes a los reales.2)Propiedad Asociativa: (a+b)+c=a+(b+c) Sean a,b,c pertenecientes a losreales.3)Existencia de elemento inverso(inverso aditivo): a+(-a)=04)Existencia de elemento neutro: a+0 =a5)Propiedad Conmutativa del producto: a.b=b.a6)Propiedad Asociativa del producto: ( a.b).c= a.(b.c)7)Existencia de elemento inverso: a.1/a = 18)Existencia de elemento neutro(del producto) : a.1 = a9)Propiedad Distributiva: (a+b).c = ac+bc (a.b)+c=(a+c).(b+c)10)Tricotomia : a>b , a<b o a=b11)Monotonia de la suma12 Monotonia del producto.13) Propiedad Transitiva a>b>c entonces a>c14) Propiedad Uniforme.Propiedades de los números reales
Propiedad: Conmutativa
Operación: Suma y Resta
Definición: a+b = b+a
Que dice:
El orden al sumar o multiplicar reales no afecta el resultado.
Ejemplo:
2+8 = 8+2 5(-3) = ( -3)5
Propiedad: Asociativa
Operación: Suma y Multiplicación
Definición: a+(b+c)=(a+b)+c------ a(bc) = (ab)c
Que dice:
Puedes hacer diferentes asociaciones al sumar o multiplicar reales y no se afecta el resultado.
Ejemplo:
7+(6+1)=(7+6)+1 -2(4x7)= (-2x4)7
Propiedad: Identidad
Operación: Suma y Multiplicación
Definición: a + 0 = a------ a x 1= a
Que dice: Todo real sumado a 0 se queda igual; el 0 es la identidad aditiva. Todo real multiplicado por 1 se queda igual; el 1 es la identidad multiplicativa.
Ejemplo:
-11 + 0 = -11 17 x 1 = 17
Propiedad: Inversos
Operación: Suma y Multiplicación
Definición: a + ( -a) = 0------(a)1/a=1
Que dice:
La suma de opuestos es cero. El producto de recíprocos es 1.
Ejemplos:
15+ (-15) = 0 1/4(4)=1
Propiedad: Distributiva
Operación: Suma respecto a Multiplicación
Definición: a(b+c) = ab + ac
Que dice:
El factor se distribuye a cada sumando.
Ejemplos:
2(x+8) = 2(x) + 2(8)
Propiedades de las igualdades
Propiedad Reflexiva
Establece que toda cantidad o exprecion es igual a si misma.
Ejemplo:
2a = 2a; 7 + 8 = 7 + 8; x = x
Propiedad Simétrica
Consiste en poder cambiar el orden de los miembros sin que la igualdad se altere.
Ejemplo:
Si 39 + 11 = 50, entonces 50 = 39 + 11
Si a - b = c, entonces c = a - b
Si x = y, entonces y = x
Propiedad Transitiva
Enuncia que si dos igualdades tienen un miembro en común los otros dos miembros también son iguales.
Ejemplo:
Si 4 + 6 = 10 y 5 + 5 = 10, entonces 4 + 6 = 5 + 5...
Answers & Comments
Verified answer
C
PROPIEDADES DE LOS NUMEROS REALES
1)Propiedad Conmutativa: a+b = b+a Sean a,b pertenecientes a los reales.2)Propiedad Asociativa: (a+b)+c=a+(b+c) Sean a,b,c pertenecientes a losreales.3)Existencia de elemento inverso(inverso aditivo): a+(-a)=04)Existencia de elemento neutro: a+0 =a5)Propiedad Conmutativa del producto: a.b=b.a6)Propiedad Asociativa del producto: ( a.b).c= a.(b.c)7)Existencia de elemento inverso: a.1/a = 18)Existencia de elemento neutro(del producto) : a.1 = a9)Propiedad Distributiva: (a+b).c = ac+bc (a.b)+c=(a+c).(b+c)10)Tricotomia : a>b , a<b o a=b11)Monotonia de la suma12 Monotonia del producto.13) Propiedad Transitiva a>b>c entonces a>c14) Propiedad Uniforme.Propiedades de los números reales
Propiedad: Conmutativa
Operación: Suma y Resta
Definición: a+b = b+a
Que dice:
El orden al sumar o multiplicar reales no afecta el resultado.
Ejemplo:
2+8 = 8+2 5(-3) = ( -3)5
Propiedad: Asociativa
Operación: Suma y Multiplicación
Definición: a+(b+c)=(a+b)+c------ a(bc) = (ab)c
Que dice:
Puedes hacer diferentes asociaciones al sumar o multiplicar reales y no se afecta el resultado.
Ejemplo:
7+(6+1)=(7+6)+1 -2(4x7)= (-2x4)7
Propiedad: Identidad
Operación: Suma y Multiplicación
Definición: a + 0 = a------ a x 1= a
Que dice: Todo real sumado a 0 se queda igual; el 0 es la identidad aditiva. Todo real multiplicado por 1 se queda igual; el 1 es la identidad multiplicativa.
Ejemplo:
-11 + 0 = -11 17 x 1 = 17
Propiedad: Inversos
Operación: Suma y Multiplicación
Definición: a + ( -a) = 0------(a)1/a=1
Que dice:
La suma de opuestos es cero. El producto de recíprocos es 1.
Ejemplos:
15+ (-15) = 0 1/4(4)=1
Propiedad: Distributiva
Operación: Suma respecto a Multiplicación
Definición: a(b+c) = ab + ac
Que dice:
El factor se distribuye a cada sumando.
Ejemplos:
2(x+8) = 2(x) + 2(8)
Propiedades de las igualdades
Propiedad Reflexiva
Establece que toda cantidad o exprecion es igual a si misma.
Ejemplo:
2a = 2a; 7 + 8 = 7 + 8; x = x
Propiedad Simétrica
Consiste en poder cambiar el orden de los miembros sin que la igualdad se altere.
Ejemplo:
Si 39 + 11 = 50, entonces 50 = 39 + 11
Si a - b = c, entonces c = a - b
Si x = y, entonces y = x
Propiedad Transitiva
Enuncia que si dos igualdades tienen un miembro en común los otros dos miembros también son iguales.
Ejemplo:
Si 4 + 6 = 10 y 5 + 5 = 10, entonces 4 + 6 = 5 + 5...
d
http://wmatem.eis.uva.es/~matpag/CONTENIDOS/Reales...
a lo mejor esto te puede ayudAR
Elemento identidad
Suma: a + 0 = 0 + a = a
Producto: a . 1 = 1 . a = a
Elemento inverso
Suma: a + (–a) = –a + a = 0
Producto: a (1/a) = (1/a)a = 1, a¹0
Ley Asociativa
Suma: a + (b + c) = (a + b) + c
Producto: a . (b . c) = (a . b) . c
Ley Conmutativa
Suma: a + b = b + a
Producto: a . b = b . a
Ley Distributiva
Producto sobre la suma: a (b + c) = (b + c) a = ab + ac
espero mis estrellas y que me elijas como mejor respuesta