If log(a) = b, then what is log(a^x) ?
log(a) = b
a = 10^b
a^x = (10^b)^x
log a^x = log (10^bx)
log a^x = bx log (10), .. .note: log 10 = 1
log a^x = b(x) *(1)
hence, log a^x = bx ...
Remember that logarithms are basically exponents--literally.
log₁₀(a) = b if and only if a = 10^b
If a = 10^b, then aˣ = (10^b)ˣ = 10^(bx).
Therefore, log₁₀(aˣ) = log₁₀(10^(bx)) = bx
log(a^x)=xlog(a)=xb.
for example:
log(100^2)=2log(100)=2x2=4 (Since log(100)=2)
--> 10^b=a
-->(10^b)^x=a^x
--> 10^(bx)=a^x
or log (a^x)=bx
Good luck !
Copyright © 2024 Q2A.ES - All rights reserved.
Answers & Comments
Verified answer
log(a) = b
a = 10^b
a^x = (10^b)^x
log a^x = log (10^bx)
log a^x = bx log (10), .. .note: log 10 = 1
log a^x = b(x) *(1)
hence, log a^x = bx ...
Remember that logarithms are basically exponents--literally.
log₁₀(a) = b if and only if a = 10^b
If a = 10^b, then aˣ = (10^b)ˣ = 10^(bx).
Therefore, log₁₀(aˣ) = log₁₀(10^(bx)) = bx
log(a^x)=xlog(a)=xb.
for example:
log(100^2)=2log(100)=2x2=4 (Since log(100)=2)
log(a) = b
--> 10^b=a
-->(10^b)^x=a^x
--> 10^(bx)=a^x
or log (a^x)=bx
Good luck !