Let z = cos u = (e^iu + e^-iu)/2
so that iu = cos ^-1(z)
(e^iu)^2 - 2z(e^iu) + 1 = 0
positive solution
e^iu = z + (z^2 - 1)^(1/2)
i*ln(e^u) = iu = ln[z + (z^2 - 1)^(1/2)]
u = cos^-1 (z) = -i[log(z+(z^2-1)^1/2)]?
Regards - Ian
OR see a really cool maths proof at
http://i869.photobucket.com/albums/ab253/iansurnam...
Copyright © 2024 Q2A.ES - All rights reserved.
Answers & Comments
Let z = cos u = (e^iu + e^-iu)/2
so that iu = cos ^-1(z)
(e^iu)^2 - 2z(e^iu) + 1 = 0
positive solution
e^iu = z + (z^2 - 1)^(1/2)
i*ln(e^u) = iu = ln[z + (z^2 - 1)^(1/2)]
u = cos^-1 (z) = -i[log(z+(z^2-1)^1/2)]?
Regards - Ian
OR see a really cool maths proof at
http://i869.photobucket.com/albums/ab253/iansurnam...