El combustible utilizado por el transbordador espacial proviene del Tanque Externo y de los cohetes aceleradores o también conocidos como Boosters. El propelente empleado en los boosters es perclorato de amonio y tiene una consistencia sólida; respecto al Tanque Externo, aquí sucede lo contrario ya que está dividido en dos tanques el superior contiene oxígeno líquido (LOX) y el segundo tanque contiene hidrógeno líquido (LH2) los cuales se mezclan en la cámara de combustión de los motores principales del transbordador espacial proveyendo la combustión.
Una característica importante de los combustibles es su impulso específico, el cual es utilizado para medir la eficiencia de los propelentes de los cohetes en términos de segundos. Cuanto más alto es el número, más “caliente” es el propelente.
La NASA utiliza cuatro tipos de propelentes: petróleo, criogénicos, hipergólicos y sólidos.
El petróleo es en realidad un tipo de kerosén similar al quemado en las lámparas y estufas. Sin embargo, en este caso se trata de un tipo llamado RP-1 (Petróleo Refinado) que es quemado con oxígeno líquido (oxidante) para proveer de impulso. El RP-1 sólo se utiliza en los cohetes Delta, Atlas-Centauro y también fue utilizado en las primeras etapas del Saturn IB y el Saturn 5.
En el programa del Transbordador no se utiliza el petróleo, salvo para etapas de satélites. En el despegue, el transbordador espacial utiliza el tipo criogénico y sólido, mientras que en órbita hace uso de los tipos hipergólicos.
Criogénicos
Los motores criogénicos se basan en la unión de oxígeno líquido (LOX), que es utilizado como oxidante, e hidrógeno líquido (LH2) que es el combustible. El LOX permanece en estado líquido a –183 °C y el LH2 a –253 °C.
En su estado gaseoso, el oxígeno y el hidrógeno tienen densidades tan bajas que serían necesarios enormes tanque para su almacenamiento, por ello deben ser enfriados y comprimidos para ser almacenados en los tanques de los cohetes. Debido a la continua tendencia de los criogénicos a volver a su estado natural, es decir, gaseoso, su uso es menos frecuente en los cohetes militares debido a que éstos deben permanecer en las bases de lanzamiento por largos períodos de tiempo.
A pesar de las dificultades que acarrean para su almacenamiento, la combinación LOX-LH2 tiene una gran eficiencia. El hidrógeno tiene una potencia un 40% mayor que otros combustibles y es muy liviano pesando cerca de 0,45 kg por cada 3,8 L. El oxígeno es mucho más pesado, con 4,5 kg por cada 3,8 litros.
Los motores de alta eficiencia a bordo del orbitador utilizan hidrógeno y oxígeno líquido logrando un impulso específico de 455 segundos, lo cual es un gran avance respecto a los motores F-1 del Saturno 5, que llegaban a 260 s. Las células de combustible a bordo del orbitador usan estos dos líquidos para producir energía eléctrica en un proceso conocido como electrólisis inversa. La quema del LOX con LH2 se produce sin producir gases tóxicos dejando sólo como subproducto vapor de agua.
Hipergólicos
Los hipergólicos son combustibles y oxidantes que entran en ignición cuando entran en contacto, por lo que no necesitan de una fuente de ignición. Esta capacidad de encendido los hace especialmente útiles en sistemas de maniobramiento, tanto tripulados como no tripulados. Otra de sus ventajas es el almacenamiento, ya que no necesitan temperaturas extremamente bajas como los criogénicos.
El combustible es monometilhidracina (MMH) y el oxidante es tetróxido de nitrógeno (N2O4). La hidracina es un compuesto de nitrógeno e hidrógeno con un olor muy fuerte similar al amoníaco. El tetróxido de nitrógeno es de color rojizo y tiene un olor repugnante. Debido a que ambos son altamente tóxicos, su tratamiento se realiza bajo condiciones de seguridad extrema.
El orbitador usa hipergólicos para el Sistema de Maniobramiento Orbital (OMS) para la inserción en órbita, maniobras orbitales y salida de órbita. El sistema de control de reacción usa hipergólicos para el control de actitud.
La eficiencia de la combinación MMH/N2O4 en el orbitador es de 260 a 280 segundos en el SCR y 313 segundos en el OMS. La mayor eficiencia del OMS se explica por la mayor expansión de las toberas y las elevadas presiones en las cámaras de combustión.
Sólido [editar]Los propelentes sólidos son los más simples de todos. Su uso no requiere de turbobombas o complejos sistemas de alimentación de propelentes. Su ignición se produce con un largo chorro de llamas producido desde la punta del cohete lo cual produce el encendido inmediato. Los combustibles sólidos, compuestos por un metal y diferentes mezclas químicas son más estables y permiten un mejor almacenamiento. Por otra parte, la gran desventaja que presentan es que los propelentes sólidos una vez encendidos no pueden apagarse.
Los propelentes sólidos se usan en una gran variedad de naves y sistemas como el Módulo de Asistencia de Carga (PAM) y en la Etapa Superior Inercial (IUS) qu
Dependera del uso destinado al cohete ;con las altas tecnologias hoy dia ,hay variantes para escoger los propergoles. En el futuro ,el empuje de los cohetes ,podria ser de fotones.
Los cohetes que usan combustibles de tipo químico proporcionan un empuje u·D constante. Siendo u la velocidad de salida de los gases (en el Sistema de Referencia en el cohete) y D el combustible expulsado en la unidad de tiempo. Si el cohete se mueve con velocidad v, la velocidad de los gases respecto del observador terrestre es v-u, que no es constante. Esta solución no es la más eficiente, aunque sea la más utilizada.
En esta página, vamos a estudiar el denominado cohete "perfecto" definido como aquél en el que la velocidad de salida de los gases u0 medida por el observador terrestre es constante. Por tanto, un cohete "perfecto" necesita de un motor que proporcione una velocidad variable de salida de los gases, que se incremente a medida que el cohete acelera.
Los cohetes del futuro probablemente dejarán de emplear combustibles químicos, y usarán aceleradores de iones, láseres, o motores nucleares, etc. que podrían aumentar de este modo el rendimiento del cohete.
Leí una vez en una enciclopedia llamada "Monitor" de Editorial Salvat, que el combustible de los cohetes se llaman "compuestos hiperbólicos", pues que como en el espacio no hay oxígeno, deben reaccionar como si fuese combustible normal pero expulsarse a gran velocidad para así por el empuje propulsar al cohete, pero SIN necesidad de oxígeno. Allí no decía nada más al respecto, pero aquí hallarás una, creo, muy buena información satisfaciente por completo a tu inquerencia:
Answers & Comments
Verified answer
El combustible utilizado por el transbordador espacial proviene del Tanque Externo y de los cohetes aceleradores o también conocidos como Boosters. El propelente empleado en los boosters es perclorato de amonio y tiene una consistencia sólida; respecto al Tanque Externo, aquí sucede lo contrario ya que está dividido en dos tanques el superior contiene oxígeno líquido (LOX) y el segundo tanque contiene hidrógeno líquido (LH2) los cuales se mezclan en la cámara de combustión de los motores principales del transbordador espacial proveyendo la combustión.
Una característica importante de los combustibles es su impulso específico, el cual es utilizado para medir la eficiencia de los propelentes de los cohetes en términos de segundos. Cuanto más alto es el número, más “caliente” es el propelente.
La NASA utiliza cuatro tipos de propelentes: petróleo, criogénicos, hipergólicos y sólidos.
El petróleo es en realidad un tipo de kerosén similar al quemado en las lámparas y estufas. Sin embargo, en este caso se trata de un tipo llamado RP-1 (Petróleo Refinado) que es quemado con oxígeno líquido (oxidante) para proveer de impulso. El RP-1 sólo se utiliza en los cohetes Delta, Atlas-Centauro y también fue utilizado en las primeras etapas del Saturn IB y el Saturn 5.
En el programa del Transbordador no se utiliza el petróleo, salvo para etapas de satélites. En el despegue, el transbordador espacial utiliza el tipo criogénico y sólido, mientras que en órbita hace uso de los tipos hipergólicos.
Criogénicos
Los motores criogénicos se basan en la unión de oxígeno líquido (LOX), que es utilizado como oxidante, e hidrógeno líquido (LH2) que es el combustible. El LOX permanece en estado líquido a –183 °C y el LH2 a –253 °C.
En su estado gaseoso, el oxígeno y el hidrógeno tienen densidades tan bajas que serían necesarios enormes tanque para su almacenamiento, por ello deben ser enfriados y comprimidos para ser almacenados en los tanques de los cohetes. Debido a la continua tendencia de los criogénicos a volver a su estado natural, es decir, gaseoso, su uso es menos frecuente en los cohetes militares debido a que éstos deben permanecer en las bases de lanzamiento por largos períodos de tiempo.
A pesar de las dificultades que acarrean para su almacenamiento, la combinación LOX-LH2 tiene una gran eficiencia. El hidrógeno tiene una potencia un 40% mayor que otros combustibles y es muy liviano pesando cerca de 0,45 kg por cada 3,8 L. El oxígeno es mucho más pesado, con 4,5 kg por cada 3,8 litros.
Los motores de alta eficiencia a bordo del orbitador utilizan hidrógeno y oxígeno líquido logrando un impulso específico de 455 segundos, lo cual es un gran avance respecto a los motores F-1 del Saturno 5, que llegaban a 260 s. Las células de combustible a bordo del orbitador usan estos dos líquidos para producir energía eléctrica en un proceso conocido como electrólisis inversa. La quema del LOX con LH2 se produce sin producir gases tóxicos dejando sólo como subproducto vapor de agua.
Hipergólicos
Los hipergólicos son combustibles y oxidantes que entran en ignición cuando entran en contacto, por lo que no necesitan de una fuente de ignición. Esta capacidad de encendido los hace especialmente útiles en sistemas de maniobramiento, tanto tripulados como no tripulados. Otra de sus ventajas es el almacenamiento, ya que no necesitan temperaturas extremamente bajas como los criogénicos.
El combustible es monometilhidracina (MMH) y el oxidante es tetróxido de nitrógeno (N2O4). La hidracina es un compuesto de nitrógeno e hidrógeno con un olor muy fuerte similar al amoníaco. El tetróxido de nitrógeno es de color rojizo y tiene un olor repugnante. Debido a que ambos son altamente tóxicos, su tratamiento se realiza bajo condiciones de seguridad extrema.
El orbitador usa hipergólicos para el Sistema de Maniobramiento Orbital (OMS) para la inserción en órbita, maniobras orbitales y salida de órbita. El sistema de control de reacción usa hipergólicos para el control de actitud.
La eficiencia de la combinación MMH/N2O4 en el orbitador es de 260 a 280 segundos en el SCR y 313 segundos en el OMS. La mayor eficiencia del OMS se explica por la mayor expansión de las toberas y las elevadas presiones en las cámaras de combustión.
Sólido [editar]Los propelentes sólidos son los más simples de todos. Su uso no requiere de turbobombas o complejos sistemas de alimentación de propelentes. Su ignición se produce con un largo chorro de llamas producido desde la punta del cohete lo cual produce el encendido inmediato. Los combustibles sólidos, compuestos por un metal y diferentes mezclas químicas son más estables y permiten un mejor almacenamiento. Por otra parte, la gran desventaja que presentan es que los propelentes sólidos una vez encendidos no pueden apagarse.
Los propelentes sólidos se usan en una gran variedad de naves y sistemas como el Módulo de Asistencia de Carga (PAM) y en la Etapa Superior Inercial (IUS) qu
Pan casero
Dependera del uso destinado al cohete ;con las altas tecnologias hoy dia ,hay variantes para escoger los propergoles. En el futuro ,el empuje de los cohetes ,podria ser de fotones.
leche de mipalo y sarro de mi culo
UNO DE LOS COMBUSTIBLES ES EL PROPERGOL
Los cohetes que usan combustibles de tipo químico proporcionan un empuje u·D constante. Siendo u la velocidad de salida de los gases (en el Sistema de Referencia en el cohete) y D el combustible expulsado en la unidad de tiempo. Si el cohete se mueve con velocidad v, la velocidad de los gases respecto del observador terrestre es v-u, que no es constante. Esta solución no es la más eficiente, aunque sea la más utilizada.
En esta página, vamos a estudiar el denominado cohete "perfecto" definido como aquél en el que la velocidad de salida de los gases u0 medida por el observador terrestre es constante. Por tanto, un cohete "perfecto" necesita de un motor que proporcione una velocidad variable de salida de los gases, que se incremente a medida que el cohete acelera.
Los cohetes del futuro probablemente dejarán de emplear combustibles químicos, y usarán aceleradores de iones, láseres, o motores nucleares, etc. que podrían aumentar de este modo el rendimiento del cohete.
Los cohetes utilizan hidrogeno liquido.
jajajaja yo que se, en mi epoca no habia, jajajaja
Leí una vez en una enciclopedia llamada "Monitor" de Editorial Salvat, que el combustible de los cohetes se llaman "compuestos hiperbólicos", pues que como en el espacio no hay oxígeno, deben reaccionar como si fuese combustible normal pero expulsarse a gran velocidad para así por el empuje propulsar al cohete, pero SIN necesidad de oxígeno. Allí no decía nada más al respecto, pero aquí hallarás una, creo, muy buena información satisfaciente por completo a tu inquerencia:
http://html.rincondelvago.com/los-cohetes.html
http://mx.encarta.msn.com/text_761577900___5/Cohet...
http://www.geocities.com/aeroteck01/cosmos05.htm
http://library.thinkquest.org/C0110484/content.php...
Espero que te resulte gustosa las lecturas que allí encontrarás, creo que son bastante completas. Saludos, pues.
no se guapa, lo siento