Ayuda por favor. Resolver con la formula general-
" 3w2 (W al cuadrado)+17w+10=0"
Tu ejercicio es:
3w^2 + 17w + 10 = 0
La fórmula general para ecuaciones cuadráticas es:
x = [-b ± √(b^2 - 4ac)] / 2a
donde:
a = 3
b = 17
c = 10
Resolviendo queda:
x = [-17 ± √(17^2 - 4 * 3 * 10)] / (2 * 3)
x = [-17 ± √(289 - 120) / 6
x = [-17 ± √169] / 6
x = [-17 ± 13] / 6
Raíces:
x1 = [-17 + 13] / 6 = -4/6 = -2/3
x2 = [-17 - 13] / 6 = -30/6 = -5
https://www.youtube.com/watch?v=Y5zCUpQy6Rw
First method: by completing square
3w² + 17w + 10 = 0
3.[w² + (17/3).w + (10/3)] = 0
w² + (17/3).w + (10/3) = 0
w² + (17/3).w + (17/6)² - (17/6)² + (10/3) = 0
w² + (17/3).w + (17/6)² - (289/36) + (120/36) = 0
w² + (17/3).w + (17/6)² - (169/36) = 0
w² + (17/3).w + (17/6)² = 169/36
[w + (17/6)]² = (± 13/6)²
w + (17/6) = ± (13/6)
w = - (17/6) ± (13/6)
w = (- 17 ± 13)/6
w₁ = (- 17 + 13)/6 → w₁ = - 4/6 → w₁ = - 2/3
w₂ = (- 17 - 13)/6 → w₂ = - 30/6 → w₂ = - 5
Second method: by combination
3w² + 17w + 10 = 0 → you can see that: (3 * 10) = 30 → and you know that: 30 = 15 * 2
3w² + (15w + 2w) + 10 = 0
3w² + 15w + 2w + 10 = 0
(3w² + 15w) + (2w + 10) = 0
3w.(w + 5) + 2.(w + 5) = 0
(3w + 2).(w + 5) = 0
First case: (3w + 2) = 0 → 3w + 2 = 0 → 3w = - 2 → w = - 2/3
Second case: (w + 5) = 0 → w + 5 = 0 → w = - 5
Third method: with the discriminant
Polynomial like: ax² + bx + c, where:
Δ = b² - 4ac (discriminant)
Δ = 17² - (4 * 3 * 10)
Δ = 289 - 120 = 169 = 13²
w₁ = (- b - √Δ)/2a = (- 17 - 13)/(2 * 3) = - 30/6 = - 5
w₂ = (- b + √Δ)/2a = (- 17 + 13)/(2 * 3) = - 4/6 = - 2/3
Copyright © 2024 Q2A.ES - All rights reserved.
Answers & Comments
Tu ejercicio es:
3w^2 + 17w + 10 = 0
La fórmula general para ecuaciones cuadráticas es:
x = [-b ± √(b^2 - 4ac)] / 2a
donde:
a = 3
b = 17
c = 10
Resolviendo queda:
x = [-17 ± √(17^2 - 4 * 3 * 10)] / (2 * 3)
x = [-17 ± √(289 - 120) / 6
x = [-17 ± √169] / 6
x = [-17 ± 13] / 6
Raíces:
x1 = [-17 + 13] / 6 = -4/6 = -2/3
x2 = [-17 - 13] / 6 = -30/6 = -5
https://www.youtube.com/watch?v=Y5zCUpQy6Rw
First method: by completing square
3w² + 17w + 10 = 0
3.[w² + (17/3).w + (10/3)] = 0
w² + (17/3).w + (10/3) = 0
w² + (17/3).w + (17/6)² - (17/6)² + (10/3) = 0
w² + (17/3).w + (17/6)² - (289/36) + (120/36) = 0
w² + (17/3).w + (17/6)² - (169/36) = 0
w² + (17/3).w + (17/6)² = 169/36
[w + (17/6)]² = (± 13/6)²
w + (17/6) = ± (13/6)
w = - (17/6) ± (13/6)
w = (- 17 ± 13)/6
w₁ = (- 17 + 13)/6 → w₁ = - 4/6 → w₁ = - 2/3
w₂ = (- 17 - 13)/6 → w₂ = - 30/6 → w₂ = - 5
Second method: by combination
3w² + 17w + 10 = 0 → you can see that: (3 * 10) = 30 → and you know that: 30 = 15 * 2
3w² + (15w + 2w) + 10 = 0
3w² + 15w + 2w + 10 = 0
(3w² + 15w) + (2w + 10) = 0
3w.(w + 5) + 2.(w + 5) = 0
(3w + 2).(w + 5) = 0
First case: (3w + 2) = 0 → 3w + 2 = 0 → 3w = - 2 → w = - 2/3
Second case: (w + 5) = 0 → w + 5 = 0 → w = - 5
Third method: with the discriminant
3w² + 17w + 10 = 0
Polynomial like: ax² + bx + c, where:
a = 3
b = 17
c = 10
Δ = b² - 4ac (discriminant)
Δ = 17² - (4 * 3 * 10)
Δ = 289 - 120 = 169 = 13²
w₁ = (- b - √Δ)/2a = (- 17 - 13)/(2 * 3) = - 30/6 = - 5
w₂ = (- b + √Δ)/2a = (- 17 + 13)/(2 * 3) = - 4/6 = - 2/3