Using laws of logarithms,
log(a)-log(b)=log(a/b)
log(a)+log(b)=log(ab)
Therefore,
log(x)-log(y)+log(x^2)
log(x/y)+log(x^2)
log(x(x^2)/y)
log(x^3/y)
og(x) - log(y) + log(x^2)
=> log(x.x^2 / y)
=> log(x^3 / y)
log(x) - log(y) + log(x^2)
log((x^3)/y) within the range of defination
use loga+logb=loga*b
loga-logb=loga/b
Copyright © 2024 Q2A.ES - All rights reserved.
Answers & Comments
Verified answer
Using laws of logarithms,
log(a)-log(b)=log(a/b)
log(a)+log(b)=log(ab)
Therefore,
log(x)-log(y)+log(x^2)
log(x/y)+log(x^2)
log(x(x^2)/y)
log(x^3/y)
og(x) - log(y) + log(x^2)
=> log(x.x^2 / y)
=> log(x^3 / y)
log(x) - log(y) + log(x^2)
=> log(x.x^2 / y)
=> log(x^3 / y)
log((x^3)/y) within the range of defination
use loga+logb=loga*b
loga-logb=loga/b