Express given product as a sum containing only sines or cosines.
sin (25x/2) * cos(x/2) =________
sin (25x/2) * cos(x/2)
WE know that
sin(A+B) =sinAcosB+cosAsinB
and sin(A−B) =sinAcosB−cosAsinB
Adding we get
sin(A+B) +sin(A−B) =2sinAcosB
or sinAcosB = ½{sin(A+B) +sin(A−B)}
In sin (25x/2) * cos(x/2) A== 25x/2 and B= x/2
Hence sin (25x/2) * cos(x/2) =½{sin(25x/2+x/2) +sin(25x/2−x/2)}
=½{sin(13x) +sin(12x)}
Copyright © 2024 Q2A.ES - All rights reserved.
Answers & Comments
Verified answer
sin (25x/2) * cos(x/2)
WE know that
sin(A+B) =sinAcosB+cosAsinB
and sin(A−B) =sinAcosB−cosAsinB
Adding we get
sin(A+B) +sin(A−B) =2sinAcosB
or sinAcosB = ½{sin(A+B) +sin(A−B)}
In sin (25x/2) * cos(x/2) A== 25x/2 and B= x/2
Hence sin (25x/2) * cos(x/2) =½{sin(25x/2+x/2) +sin(25x/2−x/2)}
=½{sin(13x) +sin(12x)}