Cos A= 2/5 and Cos B =1/5, A and B are in quadrant II, find exact values of sin (A+B) and sin (A-B).
First, find sin(a) and sin(b)...
if cos(a) = 2/5 then sin(a) = +/- sqrt(1 - 4/25) = sqrt(21)/5 (it's in qII)
if cos(b) = 1/5 then sin(b) = +/- sqrt(1 - 1/25) = sqrt(24)/5 = 4sqrt(6)/5 (in qII)
so
sin(a+b)
= sin(a)cos(b) + sin(b) cos(a)
= sqrt(21)/25 + 8sqrt(6)/25
= (sqrt(21) + 8sqrt(6))/25
and
sin(a-b)
= sin(a)cos(b) - sin(b)cos(a)
= (sqrt(21) - 8sqrt(6))/25
Google it
Copyright © 2024 Q2A.ES - All rights reserved.
Answers & Comments
First, find sin(a) and sin(b)...
if cos(a) = 2/5 then sin(a) = +/- sqrt(1 - 4/25) = sqrt(21)/5 (it's in qII)
if cos(b) = 1/5 then sin(b) = +/- sqrt(1 - 1/25) = sqrt(24)/5 = 4sqrt(6)/5 (in qII)
so
sin(a+b)
= sin(a)cos(b) + sin(b) cos(a)
= sqrt(21)/25 + 8sqrt(6)/25
= (sqrt(21) + 8sqrt(6))/25
and
sin(a-b)
= sin(a)cos(b) - sin(b)cos(a)
= (sqrt(21) - 8sqrt(6))/25
Google it