mmmm.... creo que tengo algo que te servira mushop
que tengas un lindo dia oye por cierto en que semestre de arquitectura estas ?
Matemáticas
(Trigonometrias)
Indice
1. Introducción
2. Teorema de pitágoras
3. Ley de los senos
4. Ley del coseno
5. Funciones Trigonométricas
6. Conclusion
7. Anexos
1. Introducción
En nuestros tiempos de avances tecnológicos es necesario y casi prioritario el uso de cálculos y funciones que a pesar que fueron creadas hace mucho tiempo siempre van a ser información y material de vanguardia en el moderno mundo de hoy, es necesario acotar que en el siguiente trabajo abordaremos temas de gran importancia en la matemáticas específicamente en el area de trigonometría en donde estudiaremos sus funciones y algo mas.
Dentro de los puntos que abordaremos estan los siguientes:
Teorema de Pitágoras
Ley de los Senos
Ley del Coseno
Funciones trigonométricas
Función Seno y Cosecante
Función Coseno y Secante
Función Tangente y Cotangente
Fórmulas trigonométricas.
2. Teorema de pitágoras
El teorema de Pitágoras es un teorema que se aplica exclusivamente a triángulos rectángulos, y nos sirve para obtener un lado o la hipotenusa de un triángulo, si es que se conocen los otros dos. El teorema se enuncia así:
c2 = a2+b2
donde a y b son los lados del triángulo rectángulo, y c siempre es la hipotenusa (el lado más grande del triángulo).
El cuadrito rojo en la esquina del triángulo indica solamente que ese ángulo es recto (o sea, mide exactamente 90°)
Para usar el teorema de Pitágoras, sólo hay que sustituir los datos que te dan, por ejemplo, en el triángulo rectángulo:
Te dan a (que es 3) y b (que es 4), así que sustituimos en la fórmula, y eso nos dá:
c2 = (3)2 + (4)2
elevando al cuadrado, eso da:
c2 = 9 +16 = 25
para obtener el valor de c, sacamos raíz cuadrada:
o sea que c = 5.
Cuando lo que te falta es uno de los catetos (uno de los lados, pues) , hay que despejar de la fórmula la a2 o la b2, la que quieras.
así por ejemplo, en el triángulo:
hay que despejar la a de la fórmula del teorema de Pitágoras, la b2 está sumando, la paso restando:
c2- b2 = a2
Luego, como es, una igualdad, puedo escribirla así:
a2 = c2 - b2
y ya está despejada.
sustituimos ahora los valores que nos dan de c y b ( 15 y 12)
a2 = (15)2 - (12)2
elevamos al cuadrado y queda:
a2 = 225 - 144 = 81
finalmente, sacamos raíz al resultado, y ese será el valor de a:
3. Ley de los senos
La ley de los Senos es una relación de tres igualdades que siempre se cumplen entre los lados y ángulos de un triángulo cualquiera, y que es útil para resolver ciertos tipos de problemas de triángulos.
La ley de los Senos dice así:
donde A, B y C (mayúsculas) son los lados del triángulo, y a, b y c (minúsculas) son los ángulos del triángulo:
Observa que las letras minúsculas de los ángulos no están pegadas a su letra mayúscula. O sea, la a está en el ángulo opuesto de A. La b está en el ángulo opuesto de B. Y la c está en el ángulo opuesto de C. Siempre debe ser así cuando resuelvas un triángulo. Si no lo haces así, el resultado seguramente te saldrá mal.
Resolución de triángulos por la ley de los Senos
Resolver un triángulo significa encontrar todos los datos que te faltan, a partir de los datos que te dan (que generalmente son tres datos).
*Nota: No todos los problemas de resolución de triángulos se pueden resolver con la ley de los senos. A veces, por los datos que te dan, sólo la ley de los cosenos lo puede resolver.
En general, si en un problema de triángulos te dan como datos 2 ángulos y un lado, usa ley de los senos.
Si por el contrario te dan dos lados y el ángulo que hacen esos dos lados, usa la ley del coseno.
Supóngamos que te ponen el siguiente problema:
Resolver el triángulo siguiente:
Llamemos b al ángulo de 27° porque está opuesto al lado B; a al ángulo de 43° y A al lado de 5.
Lo que tenemos entónces es lo siguiente:
A = 5
B = ?
C = ?
a = 43°
b = 27°
c = ?
El ángulo c es muy fácil de encontrar, porque la suma de los ángulos internos de un triángulo siempre suma 180°. O sea que cuando te den dos ángulos de un triángulo, el tercero siempre sale así:
c = 180° - a - b
Esta fórmula es válida para cualquier triángulo. Así que apréndetela bien o apúntala por ahí porque la usarás muchísimo en matemáticas.
Sustituimos en ésta expresión los ángulos que nos dan y queda así:
c = 180° -43°- 27° = 180° - 70° = 110°
c= 110°
Ya tenemos entónces los tres ángulos a, b y c.
Para encontrar los lados faltantes usamos la ley de los senos:
sustituyendo queda:
Nos fijamos ahora sólo en los dos primeros términos:
haremos de cuenta como que el tercer término, (la que tiene la C) no existe ahorita, de la igualdad que está en el recuadro se puede despejar la B, (como el sen (27°) está dividiendo abajo, pasa del lado izquierdo multiplicando arriba):
En verdad eres un monstruo? Te dare algunas opciones q me las han dado a mi, en un attempt psicologico, pero primero dejame comprobarlo, si en verdad eres tan bueno en trigonometria entonces resuelve esto q me esta molestando: "Siendo ß el volumen del solido R limitada superiormente por z = one million - x² - y² e inferiormente por el plano z = one million - y, calcule Senß. en funcion a radicales" Anezamha. MarvinC Ah, aun si no pudieras, ing civil no es puramente dibujo, para eso puedes estudiar dibujo arquitectonico, o arquitectura... Ing civil va mas alle y trabajas con bastante trigonometria, en especial l. a. esferica, o por lo menos eso me dijeron a mi. Cuidate y saludos con tu eleccion. Anezamha. MarvinC
Answers & Comments
Verified answer
mmmm.... creo que tengo algo que te servira mushop
que tengas un lindo dia oye por cierto en que semestre de arquitectura estas ?
Matemáticas
(Trigonometrias)
Indice
1. Introducción
2. Teorema de pitágoras
3. Ley de los senos
4. Ley del coseno
5. Funciones Trigonométricas
6. Conclusion
7. Anexos
1. Introducción
En nuestros tiempos de avances tecnológicos es necesario y casi prioritario el uso de cálculos y funciones que a pesar que fueron creadas hace mucho tiempo siempre van a ser información y material de vanguardia en el moderno mundo de hoy, es necesario acotar que en el siguiente trabajo abordaremos temas de gran importancia en la matemáticas específicamente en el area de trigonometría en donde estudiaremos sus funciones y algo mas.
Dentro de los puntos que abordaremos estan los siguientes:
Teorema de Pitágoras
Ley de los Senos
Ley del Coseno
Funciones trigonométricas
Función Seno y Cosecante
Función Coseno y Secante
Función Tangente y Cotangente
Fórmulas trigonométricas.
2. Teorema de pitágoras
El teorema de Pitágoras es un teorema que se aplica exclusivamente a triángulos rectángulos, y nos sirve para obtener un lado o la hipotenusa de un triángulo, si es que se conocen los otros dos. El teorema se enuncia así:
c2 = a2+b2
donde a y b son los lados del triángulo rectángulo, y c siempre es la hipotenusa (el lado más grande del triángulo).
El cuadrito rojo en la esquina del triángulo indica solamente que ese ángulo es recto (o sea, mide exactamente 90°)
Para usar el teorema de Pitágoras, sólo hay que sustituir los datos que te dan, por ejemplo, en el triángulo rectángulo:
Te dan a (que es 3) y b (que es 4), así que sustituimos en la fórmula, y eso nos dá:
c2 = (3)2 + (4)2
elevando al cuadrado, eso da:
c2 = 9 +16 = 25
para obtener el valor de c, sacamos raíz cuadrada:
o sea que c = 5.
Cuando lo que te falta es uno de los catetos (uno de los lados, pues) , hay que despejar de la fórmula la a2 o la b2, la que quieras.
así por ejemplo, en el triángulo:
hay que despejar la a de la fórmula del teorema de Pitágoras, la b2 está sumando, la paso restando:
c2- b2 = a2
Luego, como es, una igualdad, puedo escribirla así:
a2 = c2 - b2
y ya está despejada.
sustituimos ahora los valores que nos dan de c y b ( 15 y 12)
a2 = (15)2 - (12)2
elevamos al cuadrado y queda:
a2 = 225 - 144 = 81
finalmente, sacamos raíz al resultado, y ese será el valor de a:
3. Ley de los senos
La ley de los Senos es una relación de tres igualdades que siempre se cumplen entre los lados y ángulos de un triángulo cualquiera, y que es útil para resolver ciertos tipos de problemas de triángulos.
La ley de los Senos dice así:
donde A, B y C (mayúsculas) son los lados del triángulo, y a, b y c (minúsculas) son los ángulos del triángulo:
Observa que las letras minúsculas de los ángulos no están pegadas a su letra mayúscula. O sea, la a está en el ángulo opuesto de A. La b está en el ángulo opuesto de B. Y la c está en el ángulo opuesto de C. Siempre debe ser así cuando resuelvas un triángulo. Si no lo haces así, el resultado seguramente te saldrá mal.
Resolución de triángulos por la ley de los Senos
Resolver un triángulo significa encontrar todos los datos que te faltan, a partir de los datos que te dan (que generalmente son tres datos).
*Nota: No todos los problemas de resolución de triángulos se pueden resolver con la ley de los senos. A veces, por los datos que te dan, sólo la ley de los cosenos lo puede resolver.
En general, si en un problema de triángulos te dan como datos 2 ángulos y un lado, usa ley de los senos.
Si por el contrario te dan dos lados y el ángulo que hacen esos dos lados, usa la ley del coseno.
Supóngamos que te ponen el siguiente problema:
Resolver el triángulo siguiente:
Llamemos b al ángulo de 27° porque está opuesto al lado B; a al ángulo de 43° y A al lado de 5.
Lo que tenemos entónces es lo siguiente:
A = 5
B = ?
C = ?
a = 43°
b = 27°
c = ?
El ángulo c es muy fácil de encontrar, porque la suma de los ángulos internos de un triángulo siempre suma 180°. O sea que cuando te den dos ángulos de un triángulo, el tercero siempre sale así:
c = 180° - a - b
Esta fórmula es válida para cualquier triángulo. Así que apréndetela bien o apúntala por ahí porque la usarás muchísimo en matemáticas.
Sustituimos en ésta expresión los ángulos que nos dan y queda así:
c = 180° -43°- 27° = 180° - 70° = 110°
c= 110°
Ya tenemos entónces los tres ángulos a, b y c.
Para encontrar los lados faltantes usamos la ley de los senos:
sustituyendo queda:
Nos fijamos ahora sólo en los dos primeros términos:
haremos de cuenta como que el tercer término, (la que tiene la C) no existe ahorita, de la igualdad que está en el recuadro se puede despejar la B, (como el sen (27°) está dividiendo abajo, pasa del lado izquierdo multiplicando arriba):
y calculamos ésta expresión:
3.32838 = B
y esto es lo que vale B.
Ya nada más falta calcular C. Para ello
En verdad eres un monstruo? Te dare algunas opciones q me las han dado a mi, en un attempt psicologico, pero primero dejame comprobarlo, si en verdad eres tan bueno en trigonometria entonces resuelve esto q me esta molestando: "Siendo ß el volumen del solido R limitada superiormente por z = one million - x² - y² e inferiormente por el plano z = one million - y, calcule Senß. en funcion a radicales" Anezamha. MarvinC Ah, aun si no pudieras, ing civil no es puramente dibujo, para eso puedes estudiar dibujo arquitectonico, o arquitectura... Ing civil va mas alle y trabajas con bastante trigonometria, en especial l. a. esferica, o por lo menos eso me dijeron a mi. Cuidate y saludos con tu eleccion. Anezamha. MarvinC