Hi.
How to integrate the following functions?
1) ∫ √(4x^3) dx
2) ∫ √(4x^2 + 4) dx
3) ∫ √(x^2 - 1) dx
Can you please show your work.
Thank you.
1) ∫ √(4x³) dx = 2∫ x^(3/2) dx
= 2 * 2/5 * x^(5/2)
= (4/5)x^(5/2) + C
====================
EDIT:
to explain more clearly, √(4x³) = 2√(x³)
so ∫ √(4x³) dx = 2∫ √(x³) dx = 2∫ x^(3/2) dx
let me know if you need more info
2) ∫ √(4x² + 4) dx
= 2∫ √(x² + 1) dx
Now this is a circle and a B**tch to integrate
= x√(x² + 1) + arcsinh(x) + C
Got this from online integrator - link given below
or
let x = tanθ, hence secθ = √(x² + 1)
dx = sec²θdθ
2∫ √(x² + 1) dx = 2∫ √(tan²θ + 1) sec²θdθ
= 2∫ √(sec²θ) sec²θdθ
= 2∫ sec³θdθ
let u = secθ, dv = sec²θdθ
du = secθtanθdθ, v = tanθ
= 2∫sec³θdθ
= 2(secθtanθ - ∫secθtan²θdθ)
= 2(secθtanθ - ∫secθ(sec²θ - 1)dθ)
= 2(secθtanθ - ∫sec³θ - secθdθ)
= 2(secθtanθ - ∫sec³θdθ + ∫secθdθ)
= 2(secθtanθ - ∫sec³θdθ + ∫secθ((secθ + tanθ)(secθ + tanθ))dθ)
= 2(secθtanθ - ∫sec³θdθ + ∫(sec²θ + secθtanθ)(secθ + tanθ)dθ)
u = secθ + tanθ
du = secθtanθ + sec²θ (so numerator is derivative of denominator)
= 2(secθtanθ - ∫sec³θdθ + ln|secθ + tanθ|)
so
2∫sec³θdθ = 2(secθtanθ - ∫sec³θdθ + ln|secθ + tanθ|)
∫sec³θdθ = secθtanθ - ∫sec³θdθ + ln|secθ + tanθ|
2∫sec³θdθ = secθtanθ + ln|secθ + tanθ|
2∫ √(x² + 1) dx = 2∫sec³θdθ = secθtanθ + ln|secθ + tanθ| + C
This is the solution but in terms of θ, need it in terms of x
Note x = tanθ, hence secθ = √(x² + 1)
2∫ √(x² + 1) dx = secθtanθ + ln|secθ + tanθ| + C
= x√(x² + 1) + ln | x + √(x² + 1) | + C
3) ∫ √(x² - 1) dx (also a nasty one! but given in my table of standard integrals)
= ½(x√(x² - 1) - ln|x + √(x² - 1)| + C
or:
let x = secθ, so tanθ = √(x² - 1)
dx = secθtanθdθ
∫ √(x² - 1) dx
= ∫√(sec²θ - 1) secθtanθdθ
= ∫tanθsecθtanθdθ
= ∫secθtan²θdθ
let u = tanθ dv = secθtanθdθ
du = sec²θdθ, v = secθ
= secθtanθ - ∫secθsec²θdθ
= secθtanθ - ∫sec³θdθ (note this is already solved above)
∫sec³θdθ = ½ secθtanθ + ½ ln|secθ + tanθ|
∫ √(x² - 1) dx = secθtanθ - ½ secθtanθ - ½ ln|secθ + tanθ| + C
= ½ secθtanθ - ½ ln|secθ + tanθ| + C
= ½ x√(x² - 1) - ½ ln|x + √(x² - 1)| + C
remembering that x = secθ, so tanθ = √(x² - 1)
1. 1) ∫ √(4x^3) dx
Extremely simple. Just treat it as (4x^3)^(1/2), and bring each term to the power of (1/2). This yields
∫ (4x^3)^(1/2) dx
∫ ( 2x^(3/2) dx )
2 ∫ (x^(3/2) dx )
And now, use the reverse power rule.
2 (2/5)x^(5/2) + C
(4/5)x^(5/2) + C
2. ∫ ( √(4x^2 + 4) dx )
Factoring out the 4 inside the root means it comes out of the root (and the integral) as a 2.
2 ∫ ( √(x^2 + 1) dx )
Use trigonometric substitution to solve.
Let x = tan(t). Then
dx = sec^2(t) dt
2 ∫ ( √(tan^2(t) + 1) sec^2(t) dt )
∫ ( √(sec^2(t)) sec^2(t) dt )
∫ ( sec(t) sec^2(t) dt )
∫ ( sec^3(t) dt )
Which I'll let you solve on your own; you have to use parts and use the fact that it loops around itself.
Copyright © 2024 Q2A.ES - All rights reserved.
Answers & Comments
Verified answer
1) ∫ √(4x³) dx = 2∫ x^(3/2) dx
= 2 * 2/5 * x^(5/2)
= (4/5)x^(5/2) + C
====================
EDIT:
to explain more clearly, √(4x³) = 2√(x³)
so ∫ √(4x³) dx = 2∫ √(x³) dx = 2∫ x^(3/2) dx
let me know if you need more info
====================
2) ∫ √(4x² + 4) dx
= 2∫ √(x² + 1) dx
Now this is a circle and a B**tch to integrate
= x√(x² + 1) + arcsinh(x) + C
Got this from online integrator - link given below
or
let x = tanθ, hence secθ = √(x² + 1)
dx = sec²θdθ
2∫ √(x² + 1) dx = 2∫ √(tan²θ + 1) sec²θdθ
= 2∫ √(sec²θ) sec²θdθ
= 2∫ sec³θdθ
let u = secθ, dv = sec²θdθ
du = secθtanθdθ, v = tanθ
= 2∫sec³θdθ
= 2(secθtanθ - ∫secθtan²θdθ)
= 2(secθtanθ - ∫secθ(sec²θ - 1)dθ)
= 2(secθtanθ - ∫sec³θ - secθdθ)
= 2(secθtanθ - ∫sec³θdθ + ∫secθdθ)
= 2(secθtanθ - ∫sec³θdθ + ∫secθ((secθ + tanθ)(secθ + tanθ))dθ)
= 2(secθtanθ - ∫sec³θdθ + ∫(sec²θ + secθtanθ)(secθ + tanθ)dθ)
u = secθ + tanθ
du = secθtanθ + sec²θ (so numerator is derivative of denominator)
= 2(secθtanθ - ∫sec³θdθ + ln|secθ + tanθ|)
so
2∫sec³θdθ = 2(secθtanθ - ∫sec³θdθ + ln|secθ + tanθ|)
∫sec³θdθ = secθtanθ - ∫sec³θdθ + ln|secθ + tanθ|
2∫sec³θdθ = secθtanθ + ln|secθ + tanθ|
2∫ √(x² + 1) dx = 2∫sec³θdθ = secθtanθ + ln|secθ + tanθ| + C
This is the solution but in terms of θ, need it in terms of x
Note x = tanθ, hence secθ = √(x² + 1)
2∫ √(x² + 1) dx = secθtanθ + ln|secθ + tanθ| + C
= x√(x² + 1) + ln | x + √(x² + 1) | + C
3) ∫ √(x² - 1) dx (also a nasty one! but given in my table of standard integrals)
= ½(x√(x² - 1) - ln|x + √(x² - 1)| + C
or:
let x = secθ, so tanθ = √(x² - 1)
dx = secθtanθdθ
∫ √(x² - 1) dx
= ∫√(sec²θ - 1) secθtanθdθ
= ∫tanθsecθtanθdθ
= ∫secθtan²θdθ
let u = tanθ dv = secθtanθdθ
du = sec²θdθ, v = secθ
= secθtanθ - ∫secθsec²θdθ
= secθtanθ - ∫sec³θdθ (note this is already solved above)
∫sec³θdθ = ½ secθtanθ + ½ ln|secθ + tanθ|
so
∫ √(x² - 1) dx = secθtanθ - ½ secθtanθ - ½ ln|secθ + tanθ| + C
= ½ secθtanθ - ½ ln|secθ + tanθ| + C
= ½ x√(x² - 1) - ½ ln|x + √(x² - 1)| + C
remembering that x = secθ, so tanθ = √(x² - 1)
1. 1) ∫ √(4x^3) dx
Extremely simple. Just treat it as (4x^3)^(1/2), and bring each term to the power of (1/2). This yields
∫ (4x^3)^(1/2) dx
∫ ( 2x^(3/2) dx )
2 ∫ (x^(3/2) dx )
And now, use the reverse power rule.
2 (2/5)x^(5/2) + C
(4/5)x^(5/2) + C
2. ∫ ( √(4x^2 + 4) dx )
Factoring out the 4 inside the root means it comes out of the root (and the integral) as a 2.
2 ∫ ( √(x^2 + 1) dx )
Use trigonometric substitution to solve.
Let x = tan(t). Then
dx = sec^2(t) dt
2 ∫ ( √(tan^2(t) + 1) sec^2(t) dt )
∫ ( √(sec^2(t)) sec^2(t) dt )
∫ ( sec(t) sec^2(t) dt )
∫ ( sec^3(t) dt )
Which I'll let you solve on your own; you have to use parts and use the fact that it loops around itself.